Aperture (antenna)

Last updated

In electromagnetics and antenna theory, the aperture of an antenna is defined as "A surface, near or on an antenna, on which it is convenient to make assumptions regarding the field values for the purpose of computing fields at external points. The aperture is often taken as that portion of a plane surface near the antenna, perpendicular to the direction of maximum radiation, through which the major part of the radiation passes." [1]

Contents

Effective area

The effective area of an antenna is defined as "In a given direction, the ratio of the available power at the terminals of a receiving antenna to the power flux density of a plane wave incident on the antenna from that direction, the wave being polarization matched to the antenna." [1] Of particular note in this definition is that both effective area and power flux density are functions of incident angle of a plane wave. Assume a plane wave from a particular direction , which are the azimuth and elevation angles relative to the array normal, has a power flux density; this is the amount of power passing through a unit area normal to the direction of the plane wave of one square meter.

By definition, if an antenna delivers watts to the transmission line connected to its output terminals when irradiated by a uniform field of power density watts per square meter, the antenna's effective area for the direction of that plane wave is given by

The power accepted by the antenna (the power at the antenna terminals) is less than the power received by an antenna by the radiation efficiency of the antenna. [1] is equal to the power density of the electromagnetic energy , where is the unit vector normal to the array aperture, multiplied by the physical aperture area . The incoming radiation is assumed to have the same polarization as the antenna. Therefore,

and

The effective area of an antenna or aperture is based upon a receiving antenna. However, due to reciprocity, an antenna's directivity in receiving and transmitting are identical, so the power transmitted by an antenna in different directions (the radiation pattern) is also proportional to the effective area . When no direction is specified, is understood to refer to its maximal value. [1]

Effective length

Most antenna designs are not defined by a physical area but consist of wires or thin rods; then the effective aperture bears no clear relation to the size or area of the antenna. An alternate measure of antenna response that has a greater relationship to the physical length of such antennas is effective length measured in metres, which is defined for a receiving antenna as [2]

where

is the open-circuit voltage appearing across the antenna's terminals,
is the electric field strength of the radio signal, in volts per metre, at the antenna.

The longer the effective length, the greater is the voltage appearing at its terminals. However, the actual power implied by that voltage depends on the antenna's feedpoint impedance, so this cannot be directly related to antenna gain, which is a measure of received power (but does not directly specify voltage or current). For instance, a half-wave dipole has a much longer effective length than a short dipole. However the effective area of the short dipole is almost as great as it is for the half-wave antenna, since (ideally), given an ideal impedance-matching network, it can receive almost as much power from that wave. Note that for a given antenna feedpoint impedance, an antenna's gain or increases according to the square of , so that the effective length for an antenna relative to different wave directions follows the square root of the gain in those directions. But since changing the physical size of an antenna inevitably changes the impedance (often by a great factor), the effective length is not by itself a useful figure of merit for describing an antenna's peak directivity and is more of theoretical importance. In practice, the effective length of a particular antenna is often combined with its impedance and loss to become the realized effective length. [3]

Aperture efficiency

In general, the aperture of an antenna cannot be directly inferred from its physical size. [4] However so-called aperture antennas such as parabolic dishes and horn antennas, have a large (relative to the wavelength) physical area which is opaque to such radiation, essentially casting a shadow from a plane wave and thus removing an amount of power from the original beam. That power removed from the plane wave can be actually received by the antenna (converted into electrical power), reflected or otherwise scattered, or absorbed (converted to heat). In this case the effective aperture is always less than (or equal to) the area of the antenna's physical aperture , as it accounts only for the portion of that wave actually received as electrical power. An aperture antenna's aperture efficiency is defined as the ratio of these two areas:

The aperture efficiency is a dimensionless parameter between 0 and 1 that measures how close the antenna comes to using all the radio wave power intersecting its physical aperture. If the aperture efficiency were 100%, then all the wave's power falling on its physical aperture would be converted to electrical power delivered to the load attached to its output terminals, so these two areas would be equal: . But due to nonuniform illumination by a parabolic dish's feed, as well as other scattering or loss mechanisms, this is not achieved in practice. Since a parabolic antenna's cost and wind load increase with the physical aperture size, there may be a strong motivation to reduce these (while achieving a specified antenna gain) by maximizing the aperture efficiency. Aperture efficiencies of typical aperture antennas vary from 0.35[ citation needed ] to well over 0.70.

Note that when one simply speaks of an antenna's "efficiency", what is most often meant is the radiation efficiency , a measure which applies to all antennas (not just aperture antennas) and accounts only for the gain reduction due to losses. Outside of aperture antennas, most antennas consist of thin wires or rods with a small physical cross-sectional area (generally much smaller than ) for which "aperture efficiency" is not even defined.

Aperture and gain

The directivity of an antenna, its ability to direct radio waves preferentially in one direction or receive preferentially from a given direction, is expressed by a parameter called antenna gain . This is most commonly defined as the ratio of the power received by that antenna from waves in a given direction to the power that would be received by an ideal isotropic antenna, that is, a hypothetical antenna that receives power equally well from all directions. [Note 1] It can be seen that (for antennas at a given frequency) gain is also equal to the ratio of the apertures of these antennas:

As shown below, the aperture of a lossless isotropic antenna, which by this definition has unity gain, is

where is the wavelength of the radio waves. Thus

So antennas with large effective apertures are considered high-gain antennas (or beam antennas), which have relatively small angular beam widths. As receiving antennas, they are much more sensitive to radio waves coming from a preferred direction compared to waves coming from other directions (which would be considered interference). As transmitting antennas, most of their power is radiated in a particular direction at the expense of other directions. Although antenna gain and effective aperture are functions of direction, when no direction is specified, these are understood to refer to their maximal values, that is, in the direction(s) of the antenna's intended use (also referred to as the antenna's main lobe or boresight).

Friis transmission formula

The fraction of the power delivered to a transmitting antenna that is received by a receiving antenna is proportional to the product of the apertures of both the antennas and inversely proportional to the squared values of the distance between the antennas and the wavelength. This is given by a form of the Friis transmission formula: [5]

where

is the power fed into the transmitting antenna input terminals,
is the power available at receiving antenna output terminals,
is the effective area of the receiving antenna,
is the effective area of the transmitting antenna,
is the distance between antennas (the formula is only valid for large enough to ensure a plane wave front at the receive antenna, sufficiently approximated by , where is the largest linear dimension of either of the antennas),
is the wavelength of the radio frequency.

Derivation of antenna aperture from thermodynamic considerations

Diagram of antenna A and resistor R in thermal cavities, connected by filter Fn. If both cavities are at the same temperature
T
{\displaystyle T}
,
P
A
=
P
R
{\displaystyle P_{\text{A}}=P_{\text{R}}} Antenna and resistor in cavity.svg
Diagram of antenna A and resistor R in thermal cavities, connected by filter Fν. If both cavities are at the same temperature ,

The aperture of an isotropic antenna, the basis of the definition of gain above, can be derived on the basis of consistency with thermodynamics. [6] [7] [8] Suppose that an ideal isotropic antenna A with a driving-point impedance of R sits within a closed system CA in thermodynamic equilibrium at temperature T. We connect the antenna terminals to a resistor also of resistance R inside a second closed system CR, also at temperature T. In between may be inserted an arbitrary lossless electronic filter Fν passing only some frequency components.

Each cavity is in thermal equilibrium and thus filled with black-body radiation due to temperature T. The resistor, due to that temperature, will generate Johnson–Nyquist noise with an open-circuit voltage whose mean-squared spectral density is given by

where is a quantum-mechanical factor applying to frequency f; at normal temperatures and electronic frequencies , but in general is given by

The amount of power supplied by an electrical source of impedance R into a matched load (that is, something with an impedance of R, such as the antenna in CA) whose rms open-circuit voltage is vrms is given by

The mean-squared voltage can be found by integrating the above equation for the spectral density of mean-squared noise voltage over frequencies passed by the filter Fν. For simplicity, let us just consider Fν as a narrowband filter of bandwidth B1 around central frequency f1, in which case that integral simplifies as follows:

This power due to Johnson noise from the resistor is received by the antenna, which radiates it into the closed system CA.

The same antenna, being bathed in black-body radiation of temperature T, receives a spectral radiance (power per unit area per unit frequency per unit solid angle) given by Planck's law:

using the notation defined above.

However, that radiation is unpolarized, whereas the antenna is only sensitive to one polarization, reducing it by a factor of 2. To find the total power from black-body radiation accepted by the antenna, we must integrate that quantity times the assumed cross-sectional area Aeff of the antenna over all solid angles Ω and over all frequencies f:

Since we have assumed an isotropic radiator, Aeff is independent of angle, so the integration over solid angles is trivial, introducing a factor of 4π. And again we can take the simple case of a narrowband electronic filter function Fν which only passes power of bandwidth B1 around frequency f1. The double integral then simplifies to

where is the free-space wavelength corresponding to the frequency f1.

Since each system is in thermodynamic equilibrium at the same temperature, we expect no net transfer of power between the cavities. Otherwise one cavity would heat up and the other would cool down in violation of the second law of thermodynamics. Therefore, the power flows in both directions must be equal:

We can then solve for Aeff, the cross-sectional area intercepted by the isotropic antenna:

We thus find that for a hypothetical isotropic antenna, thermodynamics demands that the effective cross-section of the receiving antenna to have an area of λ2/4π. This result could be further generalized if we allow the integral over frequency to be more general. Then we find that Aeff for the same antenna must vary with frequency according to that same formula, using λ = c/f. Moreover, the integral over solid angle can be generalized for an antenna that is not isotropic (that is, any real antenna). Since the angle of arriving electromagnetic radiation only enters into Aeff in the above integral, we arrive at the simple but powerful result that the average of the effective cross-section Aeff over all angles at wavelength λ must also be given by

Although the above is sufficient proof, we can note that the condition of the antenna's impedance being R, the same as the resistor, can also be relaxed. In principle, any antenna impedance (that isn't totally reactive) can be impedance-matched to the resistor R by inserting a suitable (lossless) matching network. Since that network is lossless, the powers PA and PR will still flow in opposite directions, even though the voltage and currents seen at the antenna and resistor's terminals will differ. The spectral density of the power flow in either direction will still be given by , and in fact this is the very thermal-noise power spectral density associated with one electromagnetic mode, be it in free-space or transmitted electrically. Since there is only a single connection to the resistor, the resistor itself represents a single mode. And an antenna, also having a single electrical connection, couples to one mode of the electromagnetic field according to its average effective cross-section of .

See also

Related Research Articles

In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.

In telecommunications, the free-space path loss (FSPL) is the attenuation of radio energy between the feedpoints of two antennas that results from the combination of the receiving antenna's capture area plus the obstacle-free, line-of-sight (LoS) path through free space. The "Standard Definitions of Terms for Antennas", IEEE Std 145-1993, defines free-space loss as "The loss between two isotropic radiators in free space, expressed as a power ratio." It does not include any power loss in the antennas themselves due to imperfections such as resistance. Free-space loss increases with the square of distance between the antennas because the radio waves spread out by the inverse square law and decreases with the square of the wavelength of the radio waves. The FSPL is rarely used standalone, but rather as a part of the Friis transmission formula, which includes the gain of antennas. It is a factor that must be included in the power link budget of a radio communication system, to ensure that sufficient radio power reaches the receiver such that the transmitted signal is received intelligibly.

<span class="mw-page-title-main">Radiation pattern</span> Directional variation in strength of radio waves

In the field of antenna design the term radiation pattern refers to the directional (angular) dependence of the strength of the radio waves from the antenna or other source.

<span class="mw-page-title-main">Gain (antenna)</span> Telecommunications performance metric

In electromagnetics, an antenna's gain is a key performance parameter which combines the antenna's directivity and radiation efficiency. The term power gain has been deprecated by IEEE. In a transmitting antenna, the gain describes how well the antenna converts input power into radio waves headed in a specified direction. In a receiving antenna, the gain describes how well the antenna converts radio waves arriving from a specified direction into electrical power. When no direction is specified, gain is understood to refer to the peak value of the gain, the gain in the direction of the antenna's main lobe. A plot of the gain as a function of direction is called the antenna pattern or radiation pattern. It is not to be confused with directivity, which does not take an antenna's radiation efficiency into account.

<span class="mw-page-title-main">Johnson–Nyquist noise</span> Electronic noise due to thermal vibration within a conductor

Johnson–Nyquist noise is the electronic noise generated by the thermal agitation of the charge carriers inside an electrical conductor at equilibrium, which happens regardless of any applied voltage. Thermal noise is present in all electrical circuits, and in sensitive electronic equipment can drown out weak signals, and can be the limiting factor on sensitivity of electrical measuring instruments. Thermal noise is proportional to absolute temperature, so some sensitive electronic equipment such as radio telescope receivers are cooled to cryogenic temperatures to improve their signal-to-noise ratio. The generic, statistical physical derivation of this noise is called the fluctuation-dissipation theorem, where generalized impedance or generalized susceptibility is used to characterize the medium.

<span class="mw-page-title-main">Parabolic antenna</span> Type of antenna

A parabolic antenna is an antenna that uses a parabolic reflector, a curved surface with the cross-sectional shape of a parabola, to direct the radio waves. The most common form is shaped like a dish and is popularly called a dish antenna or parabolic dish. The main advantage of a parabolic antenna is that it has high directivity. It functions similarly to a searchlight or flashlight reflector to direct radio waves in a narrow beam, or receive radio waves from one particular direction only. Parabolic antennas have some of the highest gains, meaning that they can produce the narrowest beamwidths, of any antenna type. In order to achieve narrow beamwidths, the parabolic reflector must be much larger than the wavelength of the radio waves used, so parabolic antennas are used in the high frequency part of the radio spectrum, at UHF and microwave (SHF) frequencies, at which the wavelengths are small enough that conveniently sized reflectors can be used.

<span class="mw-page-title-main">Near and far field</span> Regions of an electromagnetic field

The near field and far field are regions of the electromagnetic (EM) field around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative near-field behaviors dominate close to the antenna or scatterer, while electromagnetic radiation far-field behaviors predominate at greater distances.

<span class="mw-page-title-main">Effective radiated power</span> Definition of directional radio frequency power

Effective radiated power (ERP), synonymous with equivalent radiated power, is an IEEE standardized definition of directional radio frequency (RF) power, such as that emitted by a radio transmitter. It is the total power in watts that would have to be radiated by a half-wave dipole antenna to give the same radiation intensity as the actual source antenna at a distant receiver located in the direction of the antenna's strongest beam. ERP measures the combination of the power emitted by the transmitter and the ability of the antenna to direct that power in a given direction. It is equal to the input power to the antenna multiplied by the gain of the antenna. It is used in electronics and telecommunications, particularly in broadcasting to quantify the apparent power of a broadcasting station experienced by listeners in its reception area.

Radiation resistance is that part of an antenna's feedpoint electrical resistance caused by the emission of radio waves from the antenna. A radio transmitter applies a radio frequency alternating current to an antenna, which radiates the energy of the current as radio waves. Because the antenna is absorbing the energy it is radiating from the transmitter, the antenna's input terminals present a resistance to the current from the transmitter.

<span class="mw-page-title-main">Helical antenna</span> Type of antenna

A helical antenna is an antenna consisting of one or more conducting wires wound in the form of a helix. A helical antenna made of one helical wire, the most common type, is called monofilar, while antennas with two or four wires in a helix are called bifilar, or quadrifilar, respectively.

<span class="mw-page-title-main">Dipole antenna</span> Antenna consisting of two rod-shaped conductors

In radio and telecommunications a dipole antenna or doublet is one of the two simplest and most widely-used types of antenna; the other is the monopole. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each far end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the rabbit ears television antenna found on broadcast television sets. All dipoles are electrically equivalent to two monopoles mounted end-to-end and fed with opposite phases, with the ground plane between them made virtual by the opposing monopole.

<span class="mw-page-title-main">T-antenna</span> Type of radio antenna

A ‘T’-antenna, ‘T’-aerial, or flat-top antenna is a monopole radio antenna consisting of one or more horizontal wires suspended between two supporting radio masts or buildings and insulated from them at the ends. A vertical wire is connected to the center of the horizontal wires and hangs down close to the ground, connected to the transmitter or receiver. The shape of the antenna resembles the letter "T", hence the name. The transmitter power is applied, or the receiver is connected, between the bottom of the vertical wire and a ground connection.

The Friis transmission formula is used in telecommunications engineering, equating the power at the terminals of a receive antenna as the product of power density of the incident wave and the effective aperture of the receiving antenna under idealized conditions given another antenna some distance away transmitting a known amount of power. The formula was presented first by Danish-American radio engineer Harald T. Friis in 1946. The formula is sometimes referenced as the Friis transmission equation.

<span class="mw-page-title-main">Isotropic radiator</span> Hypothetical wave source which radiates equally in all directions

An isotropic radiator is a theoretical point source of waves which radiates the same intensity of radiation in all directions. It may be based on sound waves or electromagnetic waves, in which case it is also known as an isotropic antenna. It has no preferred direction of radiation, i.e., it radiates uniformly in all directions over a sphere centred on the source.

Antenna measurement techniques refers to the testing of antennas in order to ensure that the antenna meets specifications or simply to characterize it. Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means.

<span class="mw-page-title-main">Directivity</span> Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator, a source of electromagnetic waves which radiates the same power in all directions, is 1, or 0 dBi.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Substrate-integrated waveguide</span> Waveguide formed by posts inserted in a dielectric substrate

A substrate-integrated waveguide (SIW) is a synthetic rectangular electromagnetic waveguide formed in a dielectric substrate by densely arraying metallized posts or via holes that connect the upper and lower metal plates of the substrate. The waveguide can be easily fabricated with low-cost mass-production using through-hole techniques, where the post walls consists of via fences. SIW is known to have similar guided wave and mode characteristics to conventional rectangular waveguide with equivalent guide wavelength.

Leaky-wave antenna (LWA) belong to the more general class of traveling wave antenna, that use a traveling wave on a guiding structure as the main radiating mechanism. Traveling-wave antenna fall into two general categories, slow-wave antennas and fast-wave antennas, which are usually referred to as leaky-wave antennas.

Antenna [aperture] illumination efficiency is a measure of the extent to which an antenna or array is uniformly excited or illuminated. It is typical for an antenna [aperture] or array to be intentionally under-illuminated or under-excited in order to mitigate sidelobes and reduce antenna temperature. It is not to be confused with radiation efficiency or antenna efficiency.

References

  1. 1 2 3 4 IEEE Std 145-2013, IEEE Standard for Definitions of Terms for Antennas. IEEE.
  2. Rudge, Alan W. (1982). The Handbook of Antenna Design. Vol. 1. USA: IET. p. 24. ISBN   0-906048-82-6.
  3. Sullivan, P.; Scott, A. D. (2005). "Unified frequency and time-domain antenna modeling and characterization". IEEE Transactions on Antennas and Propagation. 53 (7). IEEE: 2284–2291. doi:10.1109/TAP.2005.850760 . Retrieved 2024-06-24.
  4. Narayan, C. P. (2007). Antennas And Propagation. Technical Publications. p. 51. ISBN   978-81-8431-176-1.
  5. Friis, H. T. (May 1946). "A Note on a Simple Transmission Formula". IRE Proc. 34 (5): 254–256. doi:10.1109/JRPROC.1946.234568. S2CID   51630329.
  6. Pawsey, J. L.; Bracewell, R. N. (1955). Radio Astronomy. London: Oxford University Press. pp. 23–24.
  7. Rohlfs, Kristen; Wilson, T. L. (2013). Tools of Radio Astronomy, 4th Edition. Springer Science and Business Media. pp. 134–135. ISBN   978-3662053942.
  8. Condon, J. J.; Ransom, S. M. (2016). "Antenna Fundamentals". Essential Radio Astronomy course. US National Radio Astronomy Observatory (NRAO) website. Archived from the original on 1 September 2018. Retrieved 22 August 2018.

Notes

  1. Note that antenna gain is also often measured relative to a half-wave dipole (whose gain is 1.64), since the half-wave dipole can be used as an empirical reference antenna. Such antenna gain figures are expressed in decibels using the notation dBd rather than dBi, where the gain is relative to an isotropic antenna.