Artin reciprocity

Last updated

The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. [1] The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

Contents

Statement

Let be a Galois extension of global fields and stand for the idèle class group of . One of the statements of the Artin reciprocity law is that there is a canonical isomorphism called the global symbol map [2] [3]

where denotes the abelianization of a group, and is the Galois group of over . The map is defined by assembling the maps called the local Artin symbol, the local reciprocity map or the norm residue symbol [4] [5]

for different places of . More precisely, is given by the local maps on the -component of an idèle class. The maps are isomorphisms. This is the content of the local reciprocity law, a main theorem of local class field theory.

Proof

A cohomological proof of the global reciprocity law can be achieved by first establishing that

constitutes a class formation in the sense of Artin and Tate. [6] Then one proves that

where denote the Tate cohomology groups. Working out the cohomology groups establishes that is an isomorphism.

Significance

Artin's reciprocity law implies a description of the abelianization of the absolute Galois group of a global field K which is based on the Hasse local–global principle and the use of the Frobenius elements. Together with the Takagi existence theorem, it is used to describe the abelian extensions of K in terms of the arithmetic of K and to understand the behavior of the nonarchimedean places in them. Therefore, the Artin reciprocity law can be interpreted as one of the main theorems of global class field theory. It can be used to prove that Artin L-functions are meromorphic, and also to prove the Chebotarev density theorem. [7]

Two years after the publication of his general reciprocity law in 1927, Artin rediscovered the transfer homomorphism of I. Schur and used the reciprocity law to translate the principalization problem for ideal classes of algebraic number fields into the group theoretic task of determining the kernels of transfers of finite non-abelian groups. [8]

Finite extensions of global fields

(See https://math.stackexchange.com/questions/4131855/frobenius-elements#:~:text=A%20Frobenius%20element%20for%20P,some%20%CF%84%E2%88%88KP for an explanation of some of the terms used here)

The definition of the Artin map for a finite abelian extension L/K of global fields (such as a finite abelian extension of ) has a concrete description in terms of prime ideals and Frobenius elements.

If is a prime of K then the decomposition groups of primes above are equal in Gal(L/K) since the latter group is abelian. If is unramified in L, then the decomposition group is canonically isomorphic to the Galois group of the extension of residue fields over . There is therefore a canonically defined Frobenius element in Gal(L/K) denoted by or . If Δ denotes the relative discriminant of L/K, the Artin symbol (or Artin map, or (global) reciprocity map) of L/K is defined on the group of prime-to-Δ fractional ideals, , by linearity:

The Artin reciprocity law (or global reciprocity law) states that there is a modulus c of K such that the Artin map induces an isomorphism

where Kc,1 is the ray modulo c, NL/K is the norm map associated to L/K and is the fractional ideals of L prime to c. Such a modulus c is called a defining modulus for L/K. The smallest defining modulus is called the conductor of L/K and typically denoted

Examples

Quadratic fields

If is a squarefree integer, and , then can be identified with {±1}. The discriminant Δ of L over is d or 4d depending on whether d ≡ 1 (mod 4) or not. The Artin map is then defined on primes p that do not divide Δ by

where is the Kronecker symbol. [9] More specifically, the conductor of is the principal ideal (Δ) or (Δ)∞ according to whether Δ is positive or negative, [10] and the Artin map on a prime-to-Δ ideal (n) is given by the Kronecker symbol This shows that a prime p is split or inert in L according to whether is 1 or 1.

Cyclotomic fields

Let m > 1 be either an odd integer or a multiple of 4, let be a primitive mth root of unity, and let be the mth cyclotomic field. can be identified with by sending σ to aσ given by the rule

The conductor of is (m)∞, [11] and the Artin map on a prime-to-m ideal (n) is simply n (mod m) in [12]

Relation to quadratic reciprocity

Let p and be distinct odd primes. For convenience, let (which is always 1 (mod 4)). Then, quadratic reciprocity states that

The relation between the quadratic and Artin reciprocity laws is given by studying the quadratic field and the cyclotomic field as follows. [9] First, F is a subfield of L, so if H = Gal(L/F) and then Since the latter has order 2, the subgroup H must be the group of squares in A basic property of the Artin symbol says that for every prime-to-ℓ ideal (n)

When n = p, this shows that if and only if, p modulo ℓ is in H, i.e. if and only if, p is a square modulo ℓ.

Statement in terms of L-functions

An alternative version of the reciprocity law, leading to the Langlands program, connects Artin L-functions associated to abelian extensions of a number field with Hecke L-functions associated to characters of the idèle class group. [13]

A Hecke character (or Größencharakter) of a number field K is defined to be a quasicharacter of the idèle class group of K. Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of K. [14]

Let be an abelian Galois extension with Galois group G. Then for any character (i.e. one-dimensional complex representation of the group G), there exists a Hecke character of K such that

where the left hand side is the Artin L-function associated to the extension with character σ and the right hand side is the Hecke L-function associated with χ, Section 7.D of. [14]

The formulation of the Artin reciprocity law as an equality of L-functions allows formulation of a generalisation to n-dimensional representations, though a direct correspondence is still lacking.

Notes

  1. Helmut Hasse, History of Class Field Theory, in Algebraic Number Theory, edited by Cassels and Frölich, Academic Press, 1967, pp. 266279
  2. Neukirch (1999) p.391
  3. Jürgen Neukirch, Algebraische Zahlentheorie, Springer, 1992, p. 408. In fact, a more precise version of the reciprocity law keeps track of the ramification.
  4. Serre (1967) p.140
  5. Serre (1979) p.197
  6. Serre (1979) p.164
  7. Jürgen Neukirch, Algebraische Zahlentheorie, Springer, 1992, Chapter VII
  8. Artin, Emil (December 1929), "Idealklassen in oberkörpern und allgemeines reziprozitätsgesetz", Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 7 (1): 46–51, doi:10.1007/BF02941159 .
  9. 1 2 Lemmermeyer 2000 , §3.2
  10. Milne 2008 , example 3.11
  11. Milne 2008 , example 3.10
  12. Milne 2008 , example 3.2
  13. James Milne, Class Field Theory
  14. 1 2 Gelbart, Stephen S. (1975), Automorphic forms on adèle groups, Annals of Mathematics Studies, vol. 83, Princeton, N.J.: Princeton University Press, MR   0379375 .

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Algebraic number theory</span> Branch of number theory

Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations.

In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.

In mathematics, a reciprocity law is a generalization of the law of quadratic reciprocity to arbitrary monic irreducible polynomials with integer coefficients. Recall that first reciprocity law, quadratic reciprocity, determines when an irreducible polynomial splits into linear terms when reduced mod . That is, it determines for which prime numbers the relation

In mathematics, the adele ring of a global field is a central object of class field theory, a branch of algebraic number theory. It is the restricted product of all the completions of the global field and is an example of a self-dual topological ring.

In algebraic geometry, motives is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety.

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.

In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem. The main statements do not depend on the nature of the field – apart from its characteristic, which should not divide the integer n – and therefore belong to abstract algebra. The theory of cyclic extensions of the field K when the characteristic of K does divide n is called Artin–Schreier theory.

In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.

In mathematics, the Dedekind zeta function of an algebraic number field K, generally denoted ζK(s), is a generalization of the Riemann zeta function (which is obtained in the case where K is the field of rational numbers Q). It can be defined as a Dirichlet series, it has an Euler product expansion, it satisfies a functional equation, it has an analytic continuation to a meromorphic function on the complex plane C with only a simple pole at s = 1, and its values encode arithmetic data of K. The extended Riemann hypothesis states that if ζK(s) = 0 and 0 < Re(s) < 1, then Re(s) = 1/2.

In mathematics, an Artin L-function is a type of Dirichlet series associated to a linear representation ρ of a Galois group G. These functions were introduced in 1923 by Emil Artin, in connection with his research into class field theory. Their fundamental properties, in particular the Artin conjecture described below, have turned out to be resistant to easy proof. One of the aims of proposed non-abelian class field theory is to incorporate the complex-analytic nature of Artin L-functions into a larger framework, such as is provided by automorphic forms and the Langlands program. So far, only a small part of such a theory has been put on a firm basis.

In mathematics, an Azumaya algebra is a generalization of central simple algebras to -algebras where need not be a field. Such a notion was introduced in a 1951 paper of Goro Azumaya, for the case where is a commutative local ring. The notion was developed further in ring theory, and in algebraic geometry, where Alexander Grothendieck made it the basis for his geometric theory of the Brauer group in Bourbaki seminars from 1964–65. There are now several points of access to the basic definitions.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

<span class="mw-page-title-main">Algebraic number field</span> Finite degree (and hence algebraic) field extension of the field of rational numbers

In mathematics, an algebraic number field is an extension field of the field of rational numbers such that the field extension has finite degree . Thus is a field that contains and has finite dimension when considered as a vector space over .

In the mathematical field of algebraic number theory, the concept of principalization refers to a situation when, given an extension of algebraic number fields, some ideal of the ring of integers of the smaller field isn't principal but its extension to the ring of integers of the larger field is. Its study has origins in the work of Ernst Kummer on ideal numbers from the 1840s, who in particular proved that for every algebraic number field there exists an extension number field such that all ideals of the ring of integers of the base field become principal when extended to the larger field. In 1897 David Hilbert conjectured that the maximal abelian unramified extension of the base field, which was later called the Hilbert class field of the given base field, is such an extension. This conjecture, now known as principal ideal theorem, was proved by Philipp Furtwängler in 1930 after it had been translated from number theory to group theory by Emil Artin in 1929, who made use of his general reciprocity law to establish the reformulation. Since this long desired proof was achieved by means of Artin transfers of non-abelian groups with derived length two, several investigators tried to exploit the theory of such groups further to obtain additional information on the principalization in intermediate fields between the base field and its Hilbert class field. The first contributions in this direction are due to Arnold Scholz and Olga Taussky in 1934, who coined the synonym capitulation for principalization. Another independent access to the principalization problem via Galois cohomology of unit groups is also due to Hilbert and goes back to the chapter on cyclic extensions of number fields of prime degree in his number report, which culminates in the famous Theorem 94.

In mathematics, a profinite integer is an element of the ring

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

References