Modulus (algebraic number theory)

Last updated

In mathematics, in the field of algebraic number theory, a modulus (plural moduli) (or cycle, [1] or extended ideal [2] ) is a formal product of places of a global field (i.e. an algebraic number field or a global function field). It is used to encode ramification data for abelian extensions of a global field.

Contents

Definition

Let K be a global field with ring of integers R. A modulus is a formal product [3] [4]

where p runs over all places of K, finite or infinite, the exponents ν(p) are zero except for finitely many p. If K is a number field, ν(p) = 0 or 1 for real places and ν(p) = 0 for complex places. If K is a function field, ν(p) = 0 for all infinite places.

In the function field case, a modulus is the same thing as an effective divisor, [5] and in the number field case, a modulus can be considered as special form of Arakelov divisor. [6]

The notion of congruence can be extended to the setting of moduli. If a and b are elements of K×, the definition of a b (mod pν) depends on what type of prime p is: [7] [8]

where ordp is the normalized valuation associated to p;
under the real embedding associated to p.

Then, given a modulus m, a b (mod m) if a b (mod pν(p)) for all p such that ν(p) > 0.

Ray class group

The ray modulo m is [9] [10] [11]

A modulus m can be split into two parts, mf and m, the product over the finite and infinite places, respectively. Let Im to be one of the following:

In both case, there is a group homomorphism i : Km,1Im obtained by sending a to the principal ideal (resp. divisor) (a).

The ray class group modulo m is the quotient Cm = Im / i(Km,1). [14] [15] A coset of i(Km,1) is called a ray class modulo m.

Erich Hecke's original definition of Hecke characters may be interpreted in terms of characters of the ray class group with respect to some modulus m. [16]

Properties

When K is a number field, the following properties hold. [17]

Notes

  1. Lang 1994 , §VI.1
  2. Cohn 1985 , definition 7.2.1
  3. Janusz 1996 , §IV.1
  4. Serre 1988 , §III.1
  5. Serre 1988 , §III.1
  6. Neukirch 1999 , §III.1
  7. Janusz 1996 , §IV.1
  8. Serre 1988 , §III.1
  9. Milne 2008 , §V.1
  10. Janusz 1996 , §IV.1
  11. Serre 1988 , §VI.6
  12. Janusz 1996 , §IV.1
  13. Serre 1988 , §V.1
  14. Janusz 1996 , §IV.1
  15. Serre 1988 , §VI.6
  16. Neukirch 1999 , §VII.6
  17. Janusz 1996 , §4.1

Related Research Articles

Chinese remainder theorem Theorem for solving simultaneous congruences

In number theory, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime.

Modular arithmetic Computation modulo a fixed integer

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae, published in 1801.

Quadratic reciprocity Gives conditions for the solvability of quadratic equations modulo prime numbers

In number theory, the law of quadratic reciprocity is a theorem about modular arithmetic that gives conditions for the solvability of quadratic equations modulo prime numbers. Due to its subtlety, it has many formulations, but the most standard statement is:

Gaussian integer Complex number whose real and imaginary parts are both integers

In number theory, a Gaussian integer is a complex number whose real and imaginary parts are both integers. The Gaussian integers, with ordinary addition and multiplication of complex numbers, form an integral domain, usually written as Z[i]. This integral domain is a particular case of a commutative ring of quadratic integers. It does not have a total ordering that respects arithmetic.

In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology. Given such a field, an absolute value can be defined on it. There are two basic types of local fields: those in which the absolute value is Archimedean and those in which it is not. In the first case, one calls the local field an Archimedean local field, in the second case, one calls it a non-Archimedean local field. Local fields arise naturally in number theory as completions of global fields.

In mathematics, specifically number theory, Dirichlet characters are certain arithmetic functions which arise from completely multiplicative characters on the units of . Dirichlet characters are used to define Dirichlet L-functions, which are meromorphic functions with a variety of interesting analytic properties.

In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the off-diagonal entries are even. More generally, the notion of congruence subgroup can be defined for arithmetic subgroups of algebraic groups; that is, those for which we have a notion of 'integral structure' and can define reduction maps modulo an integer.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

In number theory and algebraic geometry, a modular curveY(Γ) is a Riemann surface, or the corresponding algebraic curve, constructed as a quotient of the complex upper half-plane H by the action of a congruence subgroup Γ of the modular group of integral 2×2 matrices SL(2, Z). The term modular curve can also be used to refer to the compactified modular curvesX(Γ) which are compactifications obtained by adding finitely many points to this quotient. The points of a modular curve parametrize isomorphism classes of elliptic curves, together with some additional structure depending on the group Γ. This interpretation allows one to give a purely algebraic definition of modular curves, without reference to complex numbers, and, moreover, prove that modular curves are defined either over the field Q of rational numbers, or a cyclotomic field. The latter fact and its generalizations are of fundamental importance in number theory.

In mathematics, the interplay between the Galois group G of a Galois extension L of a number field K, and the way the prime ideals P of the ring of integers OK factorise as products of prime ideals of OL, provides one of the richest parts of algebraic number theory. The splitting of prime ideals in Galois extensions is sometimes attributed to David Hilbert by calling it Hilbert theory. There is a geometric analogue, for ramified coverings of Riemann surfaces, which is simpler in that only one kind of subgroup of G need be considered, rather than two. This was certainly familiar before Hilbert.

In algebraic number theory, the different ideal is defined to measure the (possible) lack of duality in the ring of integers of an algebraic number field K, with respect to the field trace. It then encodes the ramification data for prime ideals of the ring of integers. It was introduced by Richard Dedekind in 1882.

The Artin reciprocity law, which was established by Emil Artin in a series of papers, is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.

Discriminant of an algebraic number field Measures the size of the ring of integers of the algebraic number field

In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified.

In number theory, the law of quadratic reciprocity, like the Pythagorean theorem, has lent itself to an unusual number of proofs. Several hundred proofs of the law of quadratic reciprocity have been found.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In number theory, a Hecke character is a generalisation of a Dirichlet character, introduced by Erich Hecke to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the Dedekind zeta-functions and certain others which have functional equations analogous to that of the Riemann zeta-function.

In mathematics, particularly in the area of number theory, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as

In algebraic number theory, the conductor of a finite abelian extension of local or global fields provides a quantitative measure of the ramification in the extension. The definition of the conductor is related to the Artin map.

In mathematics, namely ring theory, a k-th root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n, that is, a solution x to the equation . If k is the smallest such exponent for x, then x is called a primitive k-th root of unity modulo n. See modular arithmetic for notation and terminology.

Projective space plays a central role in algebraic geometry. The aim of this article is to define the notion in terms of abstract algebraic geometry and to describe some basic uses of projective space.

References