In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data.
Assembly maps for algebraic K-theory and L-theory play a central role in the topology of high-dimensional manifolds, since their homotopy fibers have a direct geometric
It is a classical result that for any generalized homology theory on the category of topological spaces (assumed to be homotopy equivalent to CW-complexes), there is a spectrum such that
where .
The functor from spaces to spectra has the following properties:
A functor from spaces to spectra fulfilling these properties is called excisive.
Now suppose that is a homotopy-invariant, not necessarily excisive functor. An assembly map is a natural transformation from some excisive functor to such that is a homotopy equivalence.
If we denote by the associated homology theory, it follows that the induced natural transformation of graded abelian groups is the universal transformation from a homology theory to , i.e. any other transformation from some homology theory factors uniquely through a transformation of homology theories .
Assembly maps exist for any homotopy invariant functor, by a simple homotopy-theoretical construction.
As a consequence of the Mayer-Vietoris sequence, the value of an excisive functor on a space only depends on its value on 'small' subspaces of , together with the knowledge how these small subspaces intersect. In a cycle representation of the associated homology theory, this means that all cycles must be representable by small cycles. For instance, for singular homology, the excision property is proved by subdivision of simplices, obtaining sums of small simplices representing arbitrary homology classes.
In this spirit, for certain homotopy-invariant functors which are not excisive, the corresponding excisive theory may be constructed by imposing 'control conditions', leading to the field of controlled topology. In this picture, assembly maps are 'forget-control' maps, i.e. they are induced by forgetting the control conditions.
Assembly maps are studied in geometric topology mainly for the two functors , algebraic L-theory of , and , algebraic K-theory of spaces of . In fact, the homotopy fibers of both assembly maps have a direct geometric interpretation when is a compact topological manifold. Therefore, knowledge about the geometry of compact topological manifolds may be obtained by studying - and -theory and their respective assembly maps.
In the case of -theory, the homotopy fiber of the corresponding assembly map , evaluated at a compact topological manifold , is homotopy equivalent to the space of block structures of . Moreover, the fibration sequence
induces a long exact sequence of homotopy groups which may be identified with the surgery exact sequence of . This may be called the fundamental theorem of surgery theory and was developed subsequently by William Browder, Sergei Novikov, Dennis Sullivan, C. T. C. Wall, Frank Quinn, and Andrew Ranicki.
For -theory, the homotopy fiber of the corresponding assembly map is homotopy equivalent to the space of stable h-cobordisms on . This fact is called the stable parametrized h-cobordism theorem, proven by Waldhausen-Jahren-Rognes. It may be viewed as a parametrized version of the classical theorem which states that equivalence classes of h-cobordisms on are in 1-to-1 correspondence with elements in the Whitehead group of .
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.
In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.
In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
In mathematics, a characteristic class is a way of associating to each principal bundle of X a cohomology class of X. The cohomology class measures the extent the bundle is "twisted" and whether it possesses sections. Characteristic classes are global invariants that measure the deviation of a local product structure from a global product structure. They are one of the unifying geometric concepts in algebraic topology, differential geometry, and algebraic geometry.
In mathematics, cobordism is a fundamental equivalence relation on the class of compact manifolds of the same dimension, set up using the concept of the boundary of a manifold. Two manifolds of the same dimension are cobordant if their disjoint union is the boundary of a compact manifold one dimension higher.
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.
Algebraic K-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called K-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the K-groups of the integers.
In geometric topology, a field within mathematics, the obstruction to a homotopy equivalence of finite CW-complexes being a simple homotopy equivalence is its Whitehead torsion which is an element in the Whitehead group. These concepts are named after the mathematician J. H. C. Whitehead.
In mathematics, particularly algebraic topology, cohomotopy sets are particular contravariant functors from the category of pointed topological spaces and basepoint-preserving continuous maps to the category of sets and functions. They are dual to the homotopy groups, but less studied.
In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. This means that, given a cohomology theory
,
In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.
In mathematics, specifically in geometric topology, surgery theory is a collection of techniques used to produce one finite-dimensional manifold from another in a 'controlled' way, introduced by John Milnor (1961). Milnor called this technique surgery, while Andrew Wallace called it spherical modification. The "surgery" on a differentiable manifold M of dimension , could be described as removing an imbedded sphere of dimension p from M. Originally developed for differentiable manifolds, surgery techniques also apply to piecewise linear (PL-) and topological manifolds.
In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.
In mathematics, especially in algebraic topology, an induced homomorphism is a homomorphism derived in a canonical way from another map. For example, a continuous map from a topological space X to a topological space Y induces a group homomorphism from the fundamental group of X to the fundamental group of Y.
In the mathematical surgery theory the surgery exact sequence is the main technical tool to calculate the surgery structure set of a compact manifold in dimension . The surgery structure set of a compact -dimensional manifold is a pointed set which classifies -dimensional manifolds within the homotopy type of .
In mathematics, a normal map is a concept in geometric topology due to William Browder which is of fundamental importance in surgery theory. Given a Poincaré complex X, a normal map on X endows the space, roughly speaking, with some of the homotopy-theoretic global structure of a closed manifold. In particular, X has a good candidate for a stable normal bundle and a Thom collapse map, which is equivalent to there being a map from a manifold M to X matching the fundamental classes and preserving normal bundle information. If the dimension of X is 5 there is then only the algebraic topology surgery obstruction due to C. T. C. Wall to X actually being homotopy equivalent to a closed manifold. Normal maps also apply to the study of the uniqueness of manifold structures within a homotopy type, which was pioneered by Sergei Novikov.
In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.
This is a glossary of properties and concepts in algebraic topology in mathematics.