Astrid (satellite)

Last updated
Astrid 1 and Astrid 2
Operator Swedish National Space Board
COSPAR ID Astrid 1: 1995-002B
Astrid 2: 1998-072B
SATCAT no. Astrid 1: 23464
Astrid 2: 25568
Website Astrid-1 at SSC Astrid-2 at SSC
Mission durationAstrid 1: 246 days
Astrid 2: 226 days
Spacecraft properties
Manufacturer Swedish Space Corporation
Launch massAstrid 1: 27 kg (60 lb)
Astrid 2: <30 kg (66 lb)
PowerAstrid 1: 11.88 W (payload), 38.5 W (nominal)
Astrid 2: 16 W (payload), 90 W (nominal)
Start of mission
Launch dateAstrid 1: 03:54:22,January 24, 1995(UTC) (1995-01-24T03:54:22Z)
Astrid 2: 11:57:07,December 10, 1998(UTC) (1998-12-10T11:57:07Z)
Rocket Cosmos-3M
End of mission
DisposalDecommissioned
DeactivatedAstrid 1: September 27, 1995 (1995-09-27) (however, on March 1 the scientific instruments became inoperable)
Astrid 2: July 24, 1999 (1999-07-24)
Orbital parameters
Reference system Geocentric
Perigee altitude Astrid 1: 968 km (601 mi)
Astrid 2: 968 km (601 mi)
Apogee altitude Astrid 1: 1,026 km (638 mi)
Astrid 2: 1,014 km (630 mi)
Inclination Astrid 1: 82.9°
Astrid 2: 82.9°
Period Astrid 1: 105 min
Astrid 2: 105 min
 

Astrid-1 and Astrid-2 were two microsatellites designed and developed by Swedish Space Corporation on behalf of the Swedish National Space Board. They were piggyback launched on a Cosmos-3M launch vehicle from Plesetsk, Russia. Astrid 1 on January 24, 1995, and Astrid 2 on December 10, 1998.

Contents

Astrid-1

Sweden's first microsatellite was piggybacked with the launch of Tsikada, a Russian navigation satellite and FAISAT, a United States communications satellite.

It carried an Energetic Neutral Atom imager called PIPPI (Prelude in Planetary Particle Imaging), an Electron Spectrometer called EMIL (Electron Measurements - In-situ and Lightweight) and two UV imagers called MIO (Miniature Imaging Optics), one for imaging the Earth's aurora and one for observing Lyman alpha-emission from the Earth's geocorona. This payload, named after characters in Astrid Lindgren's books (the idea came from a Russian scientist [1] ), was developed by the Swedish Institute of Space Physics in Kiruna.

On March 1, a DC to DC converter for the scientific instruments failed, possibly due to a short circuit, ending its scientific mission. However, the satellite was operated until September 27, serving as a testbed for various software algorithms and store-and-forward communications.

The entire satellite was built in a year and the cost, including launch, was 1.4 million U.S. dollars.

Astrid-2

Astrid-2 was Sweden's second microsatellite and it was piggybacked with Nadezhda 5, a Russian navigation satellite on December 10, 1998, on a Kosmos-3M rocket from Plesetsk in Russia. [2] [3]

Its payload, built by the Swedish Institute of Space Physics in Kiruna and Uppsala and the Royal Institute of Technology (Alfven Laboratory) in Stockholm, was EMMA (Electrical and Magnetic field Monitoring of the Aurora), LINDA (Langmuir INterferometer and Density experiment for Astrid-2), MEDUSA (Miniaturized Electrostatic DUal-tophat Spherical Analyzer) and PIA (Photometers for Imaging the Aurora). It was used to explore the electric and magnetic fields in the upper ionosphere and to measure neutral and charged particles and electron density.

On July 24, 1999, the contact with the satellite was lost. During its 7+12 months in space, Astrid-2 delivered a large amount of information to researchers.

See also

Related Research Articles

<span class="mw-page-title-main">Swedish Institute of Space Physics</span> Swedish government agency

The Swedish Institute of Space Physics is a Swedish government agency. The institute's primary task is to carry out basic research, education and associated observatory activities in space physics, space technology and atmospheric physics.

<span class="mw-page-title-main">CASSIOPE</span>

Cascade, Smallsat and Ionospheric Polar Explorer (CASSIOPE), is a Canadian Space Agency (CSA) multi-mission satellite operated by the University of Calgary. The mission development and operations from launch to February 2018 was funded through CSA and the Technology Partnerships Canada program. In February, 2018 CASSIOPE became part of the European Space Agency's Swarm constellation through the Third Party Mission Program, known as Swarm Echo, or Swarm-E. It was launched September 29, 2013, on the first flight of the SpaceX Falcon 9 v1.1 launch vehicle. CASSIOPE is the first Canadian hybrid satellite to carry a dual mission in the fields of telecommunications and scientific research. The main objectives are to gather information to better understand the science of space weather, while verifying high-speed communications concepts through the use of advanced space technologies.

<span class="mw-page-title-main">IMAGE (spacecraft)</span> NASA satellite of the Explorer program

IMAGE is a NASA Medium Explorer mission that studied the global response of the Earth's magnetosphere to changes in the solar wind. It was believed lost but as of August 2018 might be recoverable. It was launched 25 March 2000, at 20:34:43.929 UTC, by a Delta II launch vehicle from Vandenberg Air Force Base on a two-year mission. Almost six years later, it unexpectedly ceased operations in December 2005 during its extended mission and was declared lost. The spacecraft was part of NASA's Sun-Earth Connections Program, and its data has been used in over 400 research articles published in peer-reviewed journals. It had special cameras that provided various breakthroughs in understanding the dynamics of plasma around the Earth. The principal investigator was Jim Burch of the Southwest Research Institute.

<span class="mw-page-title-main">Small satellite</span> Satellites of low mass and size, usually under 500 kg

A small satellite, miniaturized satellite, or smallsat is a satellite of low mass and size, usually under 1,200 kg (2,600 lb). While all such satellites can be referred to as "small", different classifications are used to categorize them based on mass. Satellites can be built small to reduce the large economic cost of launch vehicles and the costs associated with construction. Miniature satellites, especially in large numbers, may be more useful than fewer, larger ones for some purposes – for example, gathering of scientific data and radio relay. Technical challenges in the construction of small satellites may include the lack of sufficient power storage or of room for a propulsion system.

<span class="mw-page-title-main">Meteor (satellite)</span> Series of weather observation satellites launched by Russia

The Meteor spacecraft are weather observation satellites launched by the Soviet Union and Russia. The Meteor satellite series was initially developed during the 1960s. The Meteor satellites were designed to monitor atmospheric and sea-surface temperatures, humidity, radiation, sea ice conditions, snow-cover, and clouds. Between 1964 and 1969, a total of eleven Soviet Union Meteor satellites were launched.

<span class="mw-page-title-main">Interstellar Boundary Explorer</span> NASA satellite of the Explorer program

Interstellar Boundary Explorer is a NASA satellite in Earth orbit that uses energetic neutral atoms (ENAs) to image the interaction region between the Solar System and interstellar space. The mission is part of NASA's Small Explorer program and was launched with a Pegasus-XL launch vehicle on 19 October 2008.

<span class="mw-page-title-main">Freja (satellite)</span> Swedish artificial satellite

FREJA was a Swedish satellite developed by the Swedish Space Corporation on behalf of the Swedish National Space Board. It was piggyback launched on a Long March 2C launch vehicle from Jiuquan Satellite Launch Center in China on October 6, 1992. The satellite's total cost was 19 million U.S. dollars, excluding the costs of experiments.

<span class="mw-page-title-main">Magnetospheric Multiscale Mission</span> Four NASA robots studying Earths magnetosphere (2015-present)

The Magnetospheric Multiscale (MMS) Mission is a NASA robotic space mission to study the Earth's magnetosphere, using four identical spacecraft flying in a tetrahedral formation. The spacecraft were launched on 13 March 2015 at 02:44 UTC. The mission is designed to gather information about the microphysics of magnetic reconnection, energetic particle acceleration, and turbulence⁠ — processes that occur in many astrophysical plasmas. As of March 2020, the MMS spacecraft have enough fuel to remain operational until 2040.

<span class="mw-page-title-main">Soil Moisture and Ocean Salinity</span>

Soil Moisture and Ocean Salinity (SMOS) is a satellite which forms part of ESA's Living Planet Programme. It is intended to provide new insights into Earth's water cycle and climate. In addition, it is intended to provide improved weather forecasting and monitoring of snow and ice accumulation.

SNAP-1 is a British nanosatellite in low Earth orbit. The satellite was built at the Surrey Space Centre by Surrey Satellite Technology Ltd (SSTL) and members of the University of Surrey. It was launched on 28 June 2000 on board a Kosmos-3M rocket from the Plesetsk Cosmodrome in northern Russia. It shared the launch with a Russian Nadezhda search and relay spacecraft and the Chinese Tsinghua-1 microsatellite.

<span class="mw-page-title-main">Energetic neutral atom</span> Technology to create global images of otherwise invisible phenomena

Energetic Neutral Atom (ENA) imaging, often described as "seeing with atoms", is a technology used to create global images of otherwise invisible phenomena in the magnetospheres of planets and throughout the heliosphere.

SSETI Express was the first spacecraft to be designed and built by European students and was launched by the European Space Agency. SSETI Express is a small spacecraft, similar in size and shape to a washing machine. On board the student-built spacecraft were three CubeSat picosatellites, extremely small satellites weighing around one kg each. These were deployed one hour and forty minutes after launch. Twenty-one university groups, working from locations spread across Europe and with very different cultural backgrounds, worked together via the internet to jointly create the satellite. The expected lifetime of the mission was planned to be 2 months. SSETI Express encountered an unusually fast mission development: less than 18 months from kick-off in January 2004 to flight-readiness.

<span class="mw-page-title-main">FASTSAT</span>

Fast, Affordable, Science and Technology Satellite-Huntsville 01 or FASTSAT-Huntsville 01 of the NASA. FASTSAT-HSV 01 was flying on the STP-S26 mission - a joint activity between NASA and the U.S. Department of Defense Space Test Program, or DoD STP. FASTSAT and all of its six experiments flying on the STP-S26 multi-spacecraft/payload mission have been approved by the Department of Defense Space and Experiments Review Board (USA-220).

<span class="mw-page-title-main">TWINS</span> NASA Experiments of the Explorer program

Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) are a pair of NASA instruments aboard two United States National Reconnaissance Office (NRO) satellites in Molniya orbits. TWINS was designed to provide stereo images of the Earth's ring current. The first instrument, TWINS-1, was launched aboard USA-184 on 28 June 2006. TWINS-2 followed aboard USA-200 on 13 March 2008.

BILSAT-1 was an Earth observation satellite designed and developed by TÜBİTAK Space Technologies Research Institute and produced in Turkey as part of the Disaster Monitoring Constellation (DMC) project in the context of a show-how program led by DMC International Imaging of Surrey Satellite Technology (SSTL).

<span class="mw-page-title-main">Heliophysics Science Division</span>

The Heliophysics Science Division of the Goddard Space Flight Center (NASA) conducts research on the Sun, its extended Solar System environment, and interactions of Earth, other planets, small bodies, and interstellar gas with the heliosphere. Division research also encompasses geospace—Earth's uppermost atmosphere, the ionosphere, and the magnetosphere—and the changing environmental conditions throughout the coupled heliosphere.

Small-lift launch vehicle Launch vehicle capable of lifting up to 2,000 kg (4,400 lb) into low Earth orbit

A small-lift launch vehicle is a rocket orbital launch vehicle that is capable of lifting 2,000 kg (4,400 lb) or less or under 5,000 kilograms (11,000 lb) of payload into low Earth orbit (LEO). The next larger category consists of medium-lift launch vehicles.

<span class="mw-page-title-main">Interstellar Mapping and Acceleration Probe</span> Planned NASA heliophysics mission

The Interstellar Mapping and Acceleration Probe(IMAP) is a heliophysics mission that will simultaneously investigate two important and coupled science topics in the heliosphere: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. These science topics are coupled because particles accelerated in the inner heliosphere play crucial roles in the outer heliospheric interaction. In 2018, NASA selected a team led by David J. McComas of Princeton University to implement the mission, which is currently planned to launch in February 2025. IMAP will be a Sun-tracking spin-stabilized satellite in orbit about the Sun–Earth L1 Lagrange point with a science payload of ten instruments. IMAP will also continuously broadcast real-time in-situ data that can be used for space weather prediction.

<span class="mw-page-title-main">Environmental Research Satellite</span> Family of artificial satellites launched in the 1960s run by the USAF

The Environmental Research Satellite program was a series of small satellites initially operated by the United States Air Force Office of Aerospace Research. Designed to be launched "piggyback" to other satellites during launch, detaching once in orbit, they were the smallest satellites launched to date—what would today be classified as microsatellites. 33 ERS satellites in six different series were launched between 1962 and 1971, conducting scientific research and serving as test beds to investigate the reliability of new spacecraft components.

<span class="mw-page-title-main">OV3-6</span> US Air Force satellite

Orbiting Vehicle 3-6, launched 5 December 1967, was the sixth and last satellite to be launched in the OV3 series of the United States Air Force's Orbiting Vehicle program. The satellite measured electron density and neutral density ion composition, as functions of latitude and time. The satellite reentered the Earth's atmosphere on 9 March 1969.

References

  1. "Satelliter finansierade av Rymdstyrelsen" (in Swedish). Swedish National Space Board. Archived from the original on 2014-07-14. Retrieved 2014-07-07.
  2. NASA Mission and Spacecraft Library Astrid-2
  3. "Astrid-2". www.astronautix.com. Archived from the original on 3 March 2022. Retrieved 24 April 2022.