Automated fingerprint identification

Last updated

Automated fingerprint identification is the process of using a computer to match fingerprints against a database of known and unknown prints in the fingerprint identification system. Automated fingerprint identification systems (AFIS) are primarily used by law enforcement agencies for criminal identification purposes, the most important of which is the identification of a person suspected of committing a crime or linking a suspect to other unsolved crimes.

Contents

Automated fingerprint verification is a closely related technique used in applications such as attendance and access control systems. On a technical level, verification systems verify a claimed identity (a user might claim to be John by presenting his PIN or ID card and verify his identity using his fingerprint), whereas identification systems determine identity based solely on fingerprints.

AFISs have been used in large-scale civil identifications, the chief purpose of which is to prevent multiple enrollments in an electoral, welfare, driver licensing, or similar system. Another benefit of a civil AFISs is to check the background of job applicants for sensitive posts and educational personnel who have close contact with children.

Deployed systems

The United States Integrated Automated Fingerprint Identification System (IAFIS) holds the fingerprint sets collected in the United States, and is managed by the FBI. However, the IAFIS is being retired to make room for a more improved software called the Next Generation Identification (NGI) system. Many states also have their own AFISs. AFISs have capabilities such as latent searching, electronic image storage, and electronic exchange of fingerprints and responses.

Many other countries and entities — including Canada, the European Union, the United Kingdom, Bangladesh, India, Israel, Pakistan, Sri Lanka, Argentina, Turkey, Morocco, Italy, Chile, Peru, Venezuela, Australia, Denmark, the International Criminal Police Organization, and various states, provinces, and local administrative regions — have their own systems, which are used for a variety of purposes, including criminal identification, applicant background checks, receipt of benefits, and receipt of credentials (such as passports). In Australia, the system is called the National Automated Fingerprint Identification System. [1]

European police agencies are now required by a European council act [2] to open their AFISs to each other to improve the war on terror and the investigation of cross-border crime. The act followed the Prüm treaty, an initiative between the countries Belgium, Germany, Spain, France, Luxembourg, the Netherlands and Austria. While technically not being an AFIS itself, the Pruem treaty's decentral infrastructure allows AFIS queries on all European criminal AFISs within a reasonable time.

Fingerprint-matching algorithms

Fingerprint-matching algorithms vary greatly in terms of Type I (false positive) and Type II (false negative) error rates. They also vary in terms of features such as image rotation invariance and independence from a reference point (usually, the "core", or center of the fingerprint pattern). The accuracy of the algorithm, print matching speed, robustness to poor image quality, and the characteristics noted above are critical elements of system performance.

Fingerprint matching has an enormous computational burden.[ clarification needed ] Some larger AFIS vendors deploy custom hardware while others use software to attain matching speed and throughput. In general, it is desirable to have, at the least, a two-stage search. The first stage will generally make use of global fingerprint characteristics while the second stage is the minutia matcher.

In any case, the search systems return results with some numerical measure of the probability of a match (a "score"). In ten-print searching, using a "search threshold" parameter to increase accuracy, there should seldom be more than a single candidate unless there are multiple records from the same candidate in the database. Many systems use a broader search in order to reduce the number of missed identifications, and these searches can return from one to ten possible matches. Latent to tenprint searching will frequently return many (often fifty or more) candidates because of limited and poor quality input data. The confirmation of system-suggested candidates is usually performed by a technician in forensic systems. In recent years,[ when? ] though, "lights-out" or "auto-confirm" algorithms produce "identified" or "non-identified" responses without a human operator looking at the prints, provided the matching score is high enough. "Lights-out" or "auto-confirm" is often used in civil identification systems, and is increasingly used in criminal identification systems as well.

Skepticism

For many years, the FBI have presented the claim that fingerprint identification is a fully accurate and dependable source for profiling and identification. The belief in this technique was based on the assumption that there are no two fingerprints that are the same and that every person has their own unique pattern. However, there is no scientific evidence or studies that have been done to support this claim. [3] This can also be applied to other forms of forensic identification, such as bite mark analysis — also known as forensic dentistry, which can be seen in a case of Levon Brooks. In terms of fingerprint identification, FBI agents who are responsible for examining the prints to determine the points of similarity in order to tell if they have secured a match, varies from examiner to examiner and from laboratory to laboratory. The decision process, unfortunately, is entirely subjective to the individual running the tests and there is no way to ensure that the examiner will not be susceptible to observer bias.

In 2004, after the Madrid train bombings, there were partial fingerprints identified from the bags of the explosives that had been left at the station. After careful consideration, it was determined by the FBI that the fingerprints left on the bag had matched to an individual in Portland, Oregon named Brandon Mayfield. This case, however, went on to change the entire outlook of fingerprint identification within the FBI, as it was later determined that he had been wrongly arrested. Because of this, the FBI is no longer able to testify that fingerprint identification is a 100% accurate technique for profiling, and should therefore be considered very carefully by anyone who uses it.

See also

Related Research Articles

<span class="mw-page-title-main">DNA profiling</span> Technique used to identify individuals via DNA characteristics

DNA profiling is the process of determining an individual's deoxyribonucleic acid (DNA) characteristics. DNA analysis intended to identify a species, rather than an individual, is called DNA barcoding.

<span class="mw-page-title-main">Forensic science</span> Application of science to criminal and civil laws

Forensic science, also known as criminalistics, is the application of science principles and methods to support legal decision-making in matters of criminal and civil law.

<span class="mw-page-title-main">Fingerprint</span> Biometric identifier

A fingerprint is an impression left by the friction ridges of a human finger. The recovery of partial fingerprints from a crime scene is an important method of forensic science. Moisture and grease on a finger result in fingerprints on surfaces such as glass or metal. Deliberate impressions of entire fingerprints can be obtained by ink or other substances transferred from the peaks of friction ridges on the skin to a smooth surface such as paper. Fingerprint records normally contain impressions from the pad on the last joint of fingers and thumbs, though fingerprint cards also typically record portions of lower joint areas of the fingers.

Speaker recognition is the identification of a person from characteristics of voices. It is used to answer the question "Who is speaking?" The term voice recognition can refer to speaker recognition or speech recognition. Speaker verification contrasts with identification, and speaker recognition differs from speaker diarisation.

The Henry Classification System is a long-standing method by which fingerprints are sorted by physiological characteristics for one-to-many searching. Developed by Hem Chandra Bose, Qazi Azizul Haque and Sir Edward Henry in the late 19th century for criminal investigations in British India, it was the basis of modern-day AFIS classification methods up until the 1990s. In recent years, the Henry Classification System has generally been replaced by ridge flow classification approaches.

Forensic identification is the application of forensic science, or "forensics", and technology to identify specific objects from the trace evidence they leave, often at a crime scene or the scene of an accident. Forensic means "for the courts".

<span class="mw-page-title-main">National Crime Records Bureau</span> Indian government agency

National Crime Records Bureau (NCRB) is an Indian government agency responsible for collecting and analyzing, crime data as defined by the Indian Penal Code (IPC) and Special and Local Laws (SLL). NCRB is headquartered in New Delhi and is part of the Ministry of Home Affairs (MHA) under the Government of India. Vivek Gogia (IPS) is current Director of National Crime Record Bureau.

The Wavelet Scalar Quantization algorithm (WSQ) is a compression algorithm used for gray-scale fingerprint images. It is based on wavelet theory and has become a standard for the exchange and storage of fingerprint images. WSQ was developed by the FBI, the Los Alamos National Laboratory, and the National Institute of Standards and Technology (NIST).

A government database collects information for various reasons, including climate monitoring, securities law compliance, geological surveys, patent applications and grants, surveillance, national security, border control, law enforcement, public health, voter registration, vehicle registration, social security, and statistics.

Automated Firearms Identification refers to the use of computers to automate the process of matching a piece of recovered ballistic evidence, against a database.

Next Generation Identification (NGI) is a project of the Federal Bureau of Investigation (FBI). The project's goal is to expand the capabilities of the Integrated Automated Fingerprint Identification System (IAFIS), which is currently used by law enforcement to identify subjects by their fingerprints and to look up their criminal history. The NGI system will be a more modular system. It will also have more advanced lookup capabilities, incorporating palm print, iris, and facial identification. The FBI first used this system in February 2011.

<span class="mw-page-title-main">Combined DNA Index System</span> United States national DNA database

The Combined DNA Index System (CODIS) is the United States national DNA database created and maintained by the Federal Bureau of Investigation. CODIS consists of three levels of information; Local DNA Index Systems (LDIS) where DNA profiles originate, State DNA Index Systems (SDIS) which allows for laboratories within states to share information, and the National DNA Index System (NDIS) which allows states to compare DNA information with one another.

The Integrated Automated Fingerprint Identification System (IAFIS) is a computerized system maintained by the Federal Bureau of Investigation (FBI) since 1999. It is a national automated fingerprint identification and criminal history system. IAFIS provides automated fingerprint search capabilities, latent searching capability, electronic image storage, and electronic exchange of fingerprints and responses. IAFIS houses the fingerprints and criminal histories of 70 million subjects in the criminal master file, 31 million civil prints and fingerprints from 73,000 known and suspected terrorists processed by the U.S. or by international law enforcement agencies.

The National Missing and Unidentified Persons System (NamUs) is a national clearinghouse and resource center for missing, unidentified, and unclaimed person cases throughout the United States.

The Ocean County Sheriff's Office or OCSO is the law enforcement agency for Ocean County, New Jersey, in the United States.

<span class="mw-page-title-main">Glove prints</span> Mark left on a surface by a worn glove

Glove prints, also sometimes described as gloveprints or glove marks, are latent, fingerprint-like impressions that are transferred to a surface or object by an individual who is wearing gloves.

Biometrics are used by the South African government to combat fraud and corruption and to increase the efficiency of service delivery to the public.

Criminal records in the United States contain records of arrests, criminal charges and the disposition of those charges. Criminal records are compiled and updated on local, state, and federal levels by government agencies, most often law enforcement agencies. Their primary purpose is to present a comprehensive criminal history for a specific individual.

Identix Incorporated, established in August 1982, designed, developed, manufactured, and marketed user authentication solutions by capturing and/or comparing fingerprints for security applications and personal identification. Markets included corporate enterprise security, intranet, extranet, internet, wireless Web access and security, E-commerce, government, and law enforcement agencies.

<span class="mw-page-title-main">Forensic firearm examination</span> Analysis of firearms and bullets for presentation as legal evidence

Forensic firearm examination is the forensic process of examining the characteristics of firearms or bullets left behind at a crime scene. Specialists in this field try to link bullets to weapons and weapons to individuals. They can raise and record obliterated serial numbers in an attempt to find the registered owner of a weapon and look for fingerprints on a weapon and cartridges.

References

  1. Fingerprint Identification In Australia
  2. Acts adopted under the EO treaty. Retrieved 2010-05-10.
  3. Frontline. (2012). "The Real CSI." 17 April 2012. Web. 20 August 2018. https://www.youtube.com/watch?v=91GbKc0ijHU