Avid Radiopharmaceuticals

Last updated
Avid Radiopharmaceuticals
Company typePrivate
FounderDr. Daniel Skovronsky
Headquarters,
U.S.
Parent Eli Lilly and Company
Website http://www.avidrp.com

Avid Radiopharmaceuticals is an American company, founded by Dr. Daniel Skovronsky, and based at the University City Science Center research campus in Philadelphia, Pennsylvania. The company has developed a radioactive tracer called florbetapir (18F). Florbetapir can be used to detect beta amyloid plaques in patients with memory problems using positron emission tomography (PET) scans, making the company the first to bring to market an FDA-approved method that can directly detect this hallmark pathology of Alzheimer's disease.

Contents

Eli Lilly and Company announced on November 8, 2010, that they would acquire Avid for $800 million, with $300 million paid out up front and the balance paid later on. [1]

Detection of Alzheimer's disease

Since the disease was first described by Alois Alzheimer in 1906, the only certain way to determine if a person indeed had the disease was to perform an autopsy on the patient's brain to find distinctive spots on the brain that show the buildup of amyloid plaque. Doctors must diagnose the disease in patients with memory loss and dementia based on symptoms, and as many as 20% of patients diagnosed with the disease are found after examination of the brain following death to not have had the condition. Other diagnostic tools, such as analysis of cerebrospinal fluid, magnetic resonance imaging scans looking for brain shrinkage and PET scans looking at how glucose was used in the brain, had all been unreliable. [2] [3]

Avid built on research done by William Klunk and Chester Mathis who had developed a substance called Pittsburgh compound B as a means of detecting amyloid plaque, after analyzing 400 prospective compounds and developing 300 variations of the substance that they had discovered might work. In 2002, a study performed in Sweden on Alzheimer's patients was able to detect the plaque in PET brain scans. Later studies on a control group member without the disease did not find plaque, confirming the reliability of the compound in diagnosis. While the tool worked, Pittsburgh compound B relies on the use of carbon-11, a radioactive isotope with a half-life of 20 minutes that requires the immediate use of the material prepared in a cyclotron. [2]

Chemical structure of florbetapir ( F), with the fluorine-18 atom on top Florbetapir (18F) skeletal.svg
Chemical structure of florbetapir ( F), with the fluorine-18 atom on top

Dr. Skovronsky established Avid Radiopharmaceuticals in July 2005 with the goal of finding a dye that could be injected into the body, would cross the blood–brain barrier and attach itself to amyloid protein deposits in the brain. [4] The firm raised $500,000 from BioAdvance, the Biotechnology Greenhouse of Southeastern Pennsylvania, as seed funding. [5] Once they found a candidate dye, they attached the positron-emitting fluorine-18, a radioactive isotope with a half-life of nearly two hours that is used annually in two million PET scans and that can last for as long as a day when prepared in the morning by cyclotron. The dye had been developed and patented by the University of Pennsylvania and was licensed by Avid. [2] [3]

Initial tests in 2007 on a patient at Johns Hopkins Hospital in Baltimore, previously diagnosed with symptoms of Alzheimer's disease detected plaque in a PET scan in areas where it was typically found in the brain. Further tests found that the scans detected plaque in patients with Alzheimer's, didn't find it in those without the diagnosis and found intermediate amounts in patients with early signs of dementia. The tests found amyloid plaque in 20% of its test patients over age 60 that had been in the normal range, but had performed worse than a control group on tests of mental acuity. [2]

Validation by autopsy

In order to confirm if the dye was accurate in detecting Alzheimer's, an advisory committee at the Food and Drug Administration demanded that the team of Avid, Bayer and General Electric perform a study to test their method. Avid established a study with a group of 35 hospice patients, some that had been diagnosed with dementia and others that had no memory problems. The participants and their families agreed that they would undergo the PET scans and would have their brains autopsied after their death by pathologists. After the study was conducted, Avid received confirmation in May 2010 that the results of the test were successful in distinguishing between those with Alzheimer's and those without the disease. [2]

In results presented in July 2010 to an international conference on Alzheimer's disease held in Hawaii, the company showed that for 34 out of the 35 hospice patients who had been scanned, the initial scan results were confirmed when pathologists counted plaque under a microscope and when a computerized scan of the plaque was performed on material from the autopsied brain. [6] The findings will require review by the FDA to confirm its reliability as a means of diagnosing the disease. If confirmed, the technique would provide a means to reliably diagnose and monitor the progress of Alzheimer's and would allow potential pharmaceutical treatments to be evaluated. [2]

In a study published in January 2011 in the Journal of the American Medical Association , Avid reported on the results of further studies conducted based on 152 test subjects who had agreed to receive the company's PET scans and to have their brains analyzed after death for definitive determination of the presence of amyloid plaques. Of the patients included in the study, 29 who died had autopsies performed on their brains and in all but one the brain autopsy results matched the diagnosis based on the PET scan taken before death. Avid's technique is being used to test the efficacy of Alzheimer's disease treatments being developed by other pharmaceutical firms as a means of determining the ability of the drugs to reduce the buildup of amyloid protein in the brains of living subjects. [7]

On January 20, 2011, an FDA advisory committee unanimously recommended that Avid's PET scan technique be approved for use. The advisory committee included a qualification requiring the firm to develop clear guidelines establishing when the tests had spotted enough of the amyloid plaque in order to make a diagnosis of Alzheimer's, a task that Avid CEO Skovronsky stated could be resolved in several months. [8] [ needs update ]

Other Radiopharmaceuticals

Avid is sponsoring clinical trials of [18F]AV-133 (or [18F]Fluoropropyl-(+)-DTBZ) to identify subjects with dopaminergic degeneration. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Positron emission tomography</span> Medical imaging technique

Positron emission tomography (PET) is a functional imaging technique that uses radioactive substances known as radiotracers to visualize and measure changes in metabolic processes, and in other physiological activities including blood flow, regional chemical composition, and absorption. Different tracers are used for various imaging purposes, depending on the target process within the body.

<span class="mw-page-title-main">Single-photon emission computed tomography</span> Nuclear medicine tomographic imaging technique

Single-photon emission computed tomography is a nuclear medicine tomographic imaging technique using gamma rays. It is very similar to conventional nuclear medicine planar imaging using a gamma camera, but is able to provide true 3D information. This information is typically presented as cross-sectional slices through the patient, but can be freely reformatted or manipulated as required.

<span class="mw-page-title-main">Amyloid plaques</span> Extracellular deposits of the amyloid beta protein

Amyloid plaques are extracellular deposits of the amyloid beta (Aβ) protein mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease. The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve, with an average plaque area of 400-450 square micrometers (μm2). The smallest plaques, which often consist of diffuse deposits of Aβ, are particularly numerous. Plaques form when Aβ misfolds and aggregates into oligomers and longer polymers, the latter of which are characteristic of amyloid.

<span class="mw-page-title-main">Cerebral amyloid angiopathy</span> Disease of blood vessels of the brain

Cerebral amyloid angiopathy (CAA) is a form of angiopathy in which amyloid beta peptide deposits in the walls of small to medium blood vessels of the central nervous system and meninges. The term congophilic is sometimes used because the presence of the abnormal aggregations of amyloid can be demonstrated by microscopic examination of brain tissue after staining with Congo red. The amyloid material is only found in the brain and as such the disease is not related to other forms of amyloidosis.

Pittsburgh compound B (PiB) is a radioactive analog of thioflavin T, which can be used in positron emission tomography scans to image beta-amyloid plaques in neuronal tissue. Due to this property, Pittsburgh compound B may be used in investigational studies of Alzheimer's disease.

Fluorodeoxyglucose (<sup>18</sup>F) Chemical compound

[18F]Fluorodeoxyglucose (INN), or fluorodeoxyglucose F 18, also commonly called fluorodeoxyglucose and abbreviated [18F]FDG, 2-[18F]FDG or FDG, is a radiopharmaceutical, specifically a radiotracer, used in the medical imaging modality positron emission tomography (PET). Chemically, it is 2-deoxy-2-[18F]fluoro-D-glucose, a glucose analog, with the positron-emitting radionuclide fluorine-18 substituted for the normal hydroxyl group at the C-2 position in the glucose molecule.

<span class="mw-page-title-main">Chronic traumatic encephalopathy</span> Neurodegenerative disease caused by head injury

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repeated trauma to the head. The encephalopathy symptoms can include behavioral problems, mood problems, and problems with thinking. The disease often gets worse over time and can result in dementia.

Perfusion is the passage of fluid through the lymphatic system or blood vessels to an organ or a tissue. The practice of perfusion scanning is the process by which this perfusion can be observed, recorded and quantified. The term perfusion scanning encompasses a wide range of medical imaging modalities.

<span class="mw-page-title-main">Alzheimer's disease</span> Progressive neurodegenerative disease

Alzheimer's disease (AD) is a neurodegenerative disease that usually starts slowly and progressively worsens, and is the cause of 60–70% of cases of dementia. The most common early symptom is difficulty in remembering recent events. As the disease advances, symptoms can include problems with language, disorientation, mood swings, loss of motivation, self-neglect, and behavioral issues. As a person's condition declines, they often withdraw from family and society. Gradually, bodily functions are lost, ultimately leading to death. Although the speed of progression can vary, the average life expectancy following diagnosis is three to twelve years.

Cardiac PET is a form of diagnostic imaging in which the presence of heart disease is evaluated using a PET scanner. Intravenous injection of a radiotracer is performed as part of the scan. Commonly used radiotracers are Rubidium-82, Nitrogen-13 ammonia and Oxygen-15 water.

Alzheimer's Disease Neuroimaging Initiative (ADNI) is a multisite study that aims to improve clinical trials for the prevention and treatment of Alzheimer's disease (AD). This cooperative study combines expertise and funding from the private and public sector to study subjects with AD, as well as those who may develop AD and controls with no signs of cognitive impairment. Researchers at 63 sites in the US and Canada track the progression of AD in the human brain with neuroimaging, biochemical, and genetic biological markers. This knowledge helps to find better clinical trials for the prevention and treatment of AD. ADNI has made a global impact, firstly by developing a set of standardized protocols to allow the comparison of results from multiple centers, and secondly by its data-sharing policy which makes available all at the data without embargo to qualified researchers worldwide. To date, over 1000 scientific publications have used ADNI data. A number of other initiatives related to AD and other diseases have been designed and implemented using ADNI as a model. ADNI has been running since 2004 and is currently funded until 2021.

<span class="mw-page-title-main">Brain positron emission tomography</span> Form of positron emission tomography

Brain positron emission tomography is a form of positron emission tomography (PET) that is used to measure brain metabolism and the distribution of exogenous radiolabeled chemical agents throughout the brain. PET measures emissions from radioactively labeled metabolically active chemicals that have been injected into the bloodstream. The emission data from brain PET are computer-processed to produce multi-dimensional images of the distribution of the chemicals throughout the brain.

Florbetapir (18F), sold under the brand name Amyvid, is a PET scanning radiopharmaceutical compound containing the radionuclide fluorine-18 that was approved for use in the United States in 2012, as a diagnostic tool for Alzheimer's disease. Florbetapir, like Pittsburgh compound B (PiB), binds to beta-amyloid, however fluorine-18 has a half-life of 109.75 minutes, in contrast to PiB's radioactive half life of 20 minutes. The longer life allows the tracer to accumulate significantly more in the brains of people with AD, particularly in the regions known to be associated with beta-amyloid deposits.

Aducanumab, sold under the brand name Aduhelm, is a medication designed to treat Alzheimer's disease (AD). It is a monoclonal antibody that targets aggregated forms (plaque) of amyloid beta (Aβ) found in the brains of people with Alzheimer's disease to reduce its buildup. It was developed by Biogen and Eisai. Aducanumab is given via intravenous infusion.

Florbetaben, sold under the brand name Neuraceq, is a diagnostic radiotracer developed for routine clinical application to visualize β-amyloid plaques in the brain. It is a fluorine-18 (18F)-labeled stilbene derivative.

Flutemetamol (<sup>18</sup>F) Chemical compound

Flutemetamol (18F) is a PET scanning radiopharmaceutical containing the radionuclide fluorine-18, used as a diagnostic tool for Alzheimer's disease.

Flortaucipir (<sup>18</sup>F) Chemical compound

Flortaucipir (18F), sold under the brand name Tauvid, is a radioactive diagnostic agent indicated for use with positron emission tomography (PET) imaging to image the brain.

Donanemab is a biological drug in Phase III clinical trials to determine whether it slows the progression of early Alzheimer's disease. Donanemab has shown positive results in its first trials. Donanemab was developed by the Eli Lilly and Co. and is under clinical development as a possible treatment for Alzheimer's disease. There is currently no approved cure or disease-modifying treatment for Alzheimer's disease except for lecanemab.

Hartmuth Christian Kolb is a German chemist. He is considered one of the founders of click chemistry.

Alzheimer's disease (AD) in African Americans is becoming a rising topic of interest in AD care, support, and scientific research, as African Americans are disproportionately affected by AD. Recent research on AD has shown that there are clear disparities in the disease among racial groups, with higher prevalence and incidence in African Americans than the overall average. Pathologies for Alzheimer’s also seem to manifest differently in African Americans, including with neuroinflammation markers, cognitive decline, and biomarkers. Although there are genetic risk factors for Alzheimer’s, these account for few cases in all racial groups.

References

  1. Staff. "Lilly Snags Avid Radiopharma", Forbes , November 8, 2010. Accessed November 8, 2010.
  2. 1 2 3 4 5 6 Kolata, Gina. "Promise Seen for Detection of Alzheimer’s", The New York Times , June 23, 2010. Accessed June 23, 2010.
  3. 1 2 Staff. "Avid Radiopharmaceuticals Initiates First Phase II Trial Of Novel Compound For Imaging Alzheimer's Disease", Medical News Today , June 11, 2008. Accessed June 23, 2010.
  4. Staff. "Phila. start-up developing a way to test for Alzheimer's, Avid Radiopharmaceuticals has raised $26 million in new venture financing. Seeking a test for Alzheimer's", The Philadelphia Inquirer , May 9, 2007. Accessed June 23, 2010.
  5. Staff. "Avid Radiopharmaceuticals Selected to Receive Seed Funding from BioAdvance; Funds to Be Used to Develop Molecular Imaging Tools for Alzheimer's Disease.", Business Wire , January 5, 2005. Accessed June 23, 2010.
  6. Kolata, Gina. "New Scan May Spot Alzheimer’s", The New York Times , July 12, 2010. Accessed July 14, 2010.
  7. Kolata, Gina. "Two Tests Could Aid in Risk Assessment and Early Diagnosis of Alzheimer’s", The New York Times , January 18, 2011. Accessed January 19, 2011.
  8. Kolata, Gina. "F.D.A. Sees Promise in Alzheimer’s Imaging Drug", The New York Times , January 20, 2011. Accessed January 20, 2011.
  9. "A Trial of 18F-AV-133 Positron Emission Tomography (PET) Imaging to Differentiate Subjects With Parkinson's Disease (PD) From Other Movement Disorders". Clinical Trials. U.S. National Institutes of Health. Retrieved 20 July 2015.