Avishai Henik | |
---|---|
Born | 1945 Tel Aviv, Israel |
Awards | European Research Council (ERC) Advanced Researcher Grant |
Scientific career | |
Fields | Psychology |
Institutions | Ben-Gurion University of the Negev |
Doctoral advisor | Daniel Kahneman |
Doctoral students | Roi Cohen Kadosh |
Website | in |
Avishai Henik is an Israeli neurocognitive psychologist who works at Ben-Gurion University of the Negev (BGU). Henik studies voluntary and automatic (non-voluntary/reflexive) processes involved in cognitive operations. He characterizes automatic processes (in various areas of research), and clarifies their importance, the relationship between automatic and voluntary processes, and their neural underpinnings. Most of his work involves research with human participants and in recent years, he has been working with Archer fish to examine evolutionary aspects of various cognitive functions.
Avishai Henik was born in Tel Aviv in 1945. He received his undergraduate degree in psychology and education from Ben-Gurion University of the Negev in 1971. He then moved to the Hebrew University of Jerusalem to study for his MA and PhD degrees under the supervision of Nobel Laureate Daniel Kahneman. He received his PhD in 1979. In 1980, Henik received a Rothschild post-doctoral fellowship and spent two years in Eugene, Oregon, in the laboratory of Michael I. Posner, considered a leading pioneer in building the field of cognitive neuroscience, and the neuropsychology laboratory led by Michael I. Posner and Oscar S.M. Marin in Portland, Oregon, U.S.A.
Henik began as a lecturer at Ben-Gurion University of the Negev in 1979 and was promoted to Senior Lecturer in 1984, then to Associate Professor in 1992, and a full professor in 1996. Ben-Gurion University of the Negev endowed him with the Zlotowski Chair in Cognitive Neuropsychology in 1999 and a Distinguished Professor degree in 2014. [1] He is currently continuing his research as an emeritus distinguished professor.
Henik heads the Cognitive Neuropsychology Laboratory. [2] His work is multidisciplinary—he studies mental operations, which serve as building blocks for a given cognitive function, as well as the brain tissues involved in these operations. His early works focused on single word processing and the Stroop effect and later on visual spatial attention, numerical cognition, dyscalculia, emotions, and synesthesia. He has written over 200 articles, in addition to an edited book entitled, Continuous Issues in Numerical Cognition: How Many or How Much. [3]
Henik was the instigator and chair of a multidisciplinary think-tank sponsored by the Israeli Ministry of Education whose function was to better understand the crossroads where neuroscience, cognitive science, and education meet. The aim was to identify developments in the field and their ramifications for education. In 2012, [4] Henik won a European Research Council (ERC) Advanced Researcher Grant to study the role of size perception and evaluation in numerical cognition. In this research, he focused on behavioral studies of the typical and atypical development of numerical concepts, imaging studies, and work on lower animals (i.e., Archerfish, which can evaluate size but do not have a cerebral cortex that is thought to be central in arithmetic) and examination of computational aspects of development through evolutionary algorithms.
Henik started his work on attention under the supervision of Daniel Kahneman in the middle of the 1970s. Kahneman and Henik published two papers on selective attention, one of which has been heavily cited throughout the years. [5] Since then, Henik studied the neurocognitive mechanisms that underlie orienting of visual-spatial attention and selective attention. Studies conducted in his laboratory and collaboration with other researchers (e.g., Robert Rafal) documented the distinction between the involuntary-exogenous and the voluntary-endogenous attentional systems, the cortical and subcortical neural structures that subserve these systems, and developmental trajectories in attention. His studies, on patients [6] as well as the Archer fish, [7] documented the role of subcortical structures (e.g., superior colliculus) in inhibition of return (IOR). His research on selective attention uses a range of tasks like the Stroop, [8] flanker, [9] and the stop-signal task, [10] which require selection and control over habitual responding. This research led Henik to study cognitive control and executive functions.
Henik's research in this area aims at understanding the development of goal-directed behavior and self-regulation. Research in his laboratory has shown that cognitive control and emotional regulation could work in top-down or bottom-up pathways. Emotions, commonly thought to involve subcortical structures (e.g., amygdala), can be regulated by cognitive control (that involves higher brain structures in the cerebral cortex) [11] [12] and are affected by training. [13] Moreover, attentional alerting (thought to involve subcortical brain structures) was found to modulate cognitive control / executive functions. [9]
Henik studies the building blocks of numerical cognition and developmental dyscalculia [14] —a specific deficiency in arithmetic that is similar in nature and prevalence to dyslexia. Together with Joseph Tzelgov, Henik designed the numerical Stroop task and showed (a) the intimate relationship between sizes and numbers, and (b) the fact that numerical values are processed automatically even when completely irrelevant to the task. In subsequent years, it was found that performance in the numerical Stroop task depends on knowledge of the numerical system, [15] involves specific brain areas (i.e., the cortical intraparietal sulcus), [16] and is compromised in developmental dyscalculia [17] [18] [19] and acalculia. [20] In recent years Henik pointed out the importance of non-countable dimensions (e.g., which object is larger in size, how much water is in the glass) to numerical cognition. In recent publications, [21] [22] Henik and colleagues suggested the existence of a magnitude sense rather than a number sense, with the former based on the ability to perceive and evaluate non-countable dimensions (e.g., size). Henik and colleagues edited three books in numerical cognition. One dealt with the role of continuous dimensions, [23] one with heterogeneity of functions involved in numerical cognition, [24] and one with learning and education in mathematical cognition. [25]
It has been suggested that synesthesia can serve as a window to understanding crucial issues in object perception such as feature binding, and that it documents cross-talk between supposedly separate systems (e.g., vision and audition). In studies of synesthesia, Henik and his colleagues combined behavioral and brain imaging techniques [26] [27] as well as harnessed other techniques (e.g., hypnosis) in order to examine fundamental issues in the field. [28]
Henik assumed various roles in academic administration. At BGU, he was Dean of the Faculty of Humanities and Social Sciences, chairperson for the Department of Behavioral Sciences, and for the Zlotowski Center for Neuroscience. On a national level (Israel), he was a member of the first board of directors of FIRST (Focal Initiative in Research in Science and Technology, Bikura), founded by the Israel Science Foundation (ISF). He was also a member of the CHE (Council of Higher Education) international committee for the evaluation of accredited Psychology and Behavioral Sciences studies in Israel. On an international level, he was a member of the executive committee of the European Society for Cognitive Psychology (ESCoP) and the chair of the governing board of the recently established Mathematical Cognition and Learning Society (MCLS).
Cognitive psychology is the scientific study of mental processes such as attention, language use, memory, perception, problem solving, creativity, and reasoning.
A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, may dictate their behavior in the world. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, and irrationality.
Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition, with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience. Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.
Attention is the concentration of awareness on some phenomenon to the exclusion of other stimuli. It is a process of selectively concentrating on a discrete aspect of information, whether considered subjective or objective. William James (1890) wrote that "Attention is the taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence." Attention has also been described as the allocation of limited cognitive processing resources. Attention is manifested by an attentional bottleneck, in terms of the amount of data the brain can process each second; for example, in human vision, only less than 1% of the visual input data can enter the bottleneck, leading to inattentional blindness.
Dyscalculia is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations, and learning facts in mathematics. It is sometimes colloquially referred to as "math dyslexia", though this analogy is misleading as they are distinct syndromes.
In psychology, the Stroop effect is the delay in reaction time between congruent and incongruent stimuli.
In psychology, the emotional Stroop task is used as an information-processing approach to assessing emotions. Like the standard Stroop effect, the emotional Stroop test works by examining the response time of the participant to name colors of words presented to them. Unlike the traditional Stroop effect, the words presented either relate to specific emotional states or disorders, or they are neutral. For example, depressed participants will be slower to say the color of depressing words rather than non-depressing words. Non-clinical subjects have also been shown to name the color of an emotional word slower than naming the color of a neutral word. Negative words selected for the emotional Stroop task can be either preselected by researchers or taken from the lived experiences of participants completing the task. Typically, when asked to identify the color of the words presented to them, participants reaction times for negative emotional words is slower than the identification of the color of neutral words. While it has been shown that those in negative moods tend to take longer to respond when presented with negative word stimuli, this is not always the case when participants are presented with words that are positive or more neutral in tone.
In cognitive science and neuropsychology, executive functions are a set of cognitive processes that are necessary for the cognitive control of behavior: selecting and successfully monitoring behaviors that facilitate the attainment of chosen goals. Executive functions include basic cognitive processes such as attentional control, cognitive inhibition, inhibitory control, working memory, and cognitive flexibility. Higher-order executive functions require the simultaneous use of multiple basic executive functions and include planning and fluid intelligence.
Developmental cognitive neuroscience is an interdisciplinary scientific field devoted to understanding psychological processes and their neurological bases in the developing organism. It examines how the mind changes as children grow up, interrelations between that and how the brain is changing, and environmental and biological influences on the developing mind and brain.
Stanislas Dehaene is a French author and cognitive neuroscientist whose research centers on a number of topics, including numerical cognition, the neural basis of reading and the neural correlates of consciousness. As of 2017, he is a professor at the Collège de France and, since 1989, the director of INSERM Unit 562, "Cognitive Neuroimaging".
Neurodevelopmental framework for learning, like all frameworks, is an organizing structure through which learners and learning can be understood. Intelligence theories and neuropsychology inform many of them. The framework described below is a neurodevelopmental framework for learning. The neurodevelopmental framework was developed by the All Kinds of Minds Institute in collaboration with Dr. Mel Levine and the University of North Carolina's Clinical Center for the Study of Development and Learning. It is similar to other neuropsychological frameworks, including Alexander Luria's cultural-historical psychology and psychological activity theory, but also draws from disciplines such as speech-language pathology, occupational therapy, and physical therapy. It also shares components with other frameworks, some of which are listed below. However, it does not include a general intelligence factor, since the framework is used to describe learners in terms of profiles of strengths and weaknesses, as opposed to using labels, diagnoses, or broad ability levels. This framework was also developed to link with academic skills, such as reading and writing. Implications for education are discussed below as well as the connections to and compatibilities with several major educational policy issues.
The concept of motor cognition grasps the notion that cognition is embodied in action, and that the motor system participates in what is usually considered as mental processing, including those involved in social interaction. The fundamental unit of the motor cognition paradigm is action, defined as the movements produced to satisfy an intention towards a specific motor goal, or in reaction to a meaningful event in the physical and social environments. Motor cognition takes into account the preparation and production of actions, as well as the processes involved in recognizing, predicting, mimicking, and understanding the behavior of other people. This paradigm has received a great deal of attention and empirical support in recent years from a variety of research domains including embodied cognition, developmental psychology, cognitive neuroscience, and social psychology.
Marc Jeannerod was a neurologist, a neurophysiologist and an internationally recognized expert in cognitive neuroscience and experimental psychology. His research focuses on the cognitive and neurophysiological mechanisms underpinning motor control, motor cognition, the sense of agency, and more recently language and social cognition. Jeannerod's work bridges with elegance and rigor various levels of analysis, ranging from neuroscience to philosophy of mind, with clear implications for the understanding of a number of psychiatric and neurological disorders, especially schizophrenia.
In psychology and neuroscience, executive dysfunction, or executive function deficit, is a disruption to the efficacy of the executive functions, which is a group of cognitive processes that regulate, control, and manage other cognitive processes. Executive dysfunction can refer to both neurocognitive deficits and behavioural symptoms. It is implicated in numerous psychopathologies and mental disorders, as well as short-term and long-term changes in non-clinical executive control. Executive dysfunction is the mechanism underlying ADHD Paralysis, and in a broader context, it can encompass other cognitive difficulties like planning, organizing, initiating tasks and regulating emotions. It is a core characteristic of ADHD and can elucidate numerous other recognized symptoms.
Brian Lewis Butterworth FBA is emeritus professor of cognitive neuropsychology in the Institute of Cognitive Neuroscience at University College London, England. His research has ranged from speech errors and pauses, short-term memory deficits, reading and the dyslexias both in alphabetic scripts and Chinese, and mathematics and dyscalculia. He has also pioneered educational neuroscience, notably in the study of learners with special educational needs.
Educational neuroscience is an emerging scientific field that brings together researchers in cognitive neuroscience, developmental cognitive neuroscience, educational psychology, educational technology, education theory and other related disciplines to explore the interactions between biological processes and education. Researchers in educational neuroscience investigate the neural mechanisms of reading, numerical cognition, attention and their attendant difficulties including dyslexia, dyscalculia and ADHD as they relate to education. Researchers in this area may link basic findings in cognitive neuroscience with educational technology to help in curriculum implementation for mathematics education and reading education. The aim of educational neuroscience is to generate basic and applied research that will provide a new transdisciplinary account of learning and teaching, which is capable of informing education. A major goal of educational neuroscience is to bridge the gap between the two fields through a direct dialogue between researchers and educators, avoiding the "middlemen of the brain-based learning industry". These middlemen have a vested commercial interest in the selling of "neuromyths" and their supposed remedies.
Attentional control, colloquially referred to as concentration, refers to an individual's capacity to choose what they pay attention to and what they ignore. It is also known as endogenous attention or executive attention. In lay terms, attentional control can be described as an individual's ability to concentrate. Primarily mediated by the frontal areas of the brain including the anterior cingulate cortex, attentional control is thought to be closely related to other executive functions such as working memory.
In psychology, the numerical Stroop effect demonstrates the relationship between numerical values and physical sizes. When digits are presented visually, they can be physically large or small, irrespective of their actual values. Congruent pairs occur when size and value correspond while incongruent pairs occur when size and value are incompatible. It was found that when people are asked to compare digits, their reaction time tends to be slower in the case of incongruent pairs. This reaction time difference between congruent and incongruent pairs is termed the numerical Stroop effect
Roi Cohen Kadosh is an Israeli-British cognitive neuroscientist notable for his work on numerical and mathematical cognition and learning and cognitive enhancement. He is a professor of Cognitive Neuroscience and the head of the School of Psychology at the University of Surrey.
Carlo Semenza is an Italian neuropsychologist and cognitive neuroscientist. Carlo Semenza’s research activity mostly contributed to the field of aphasiology, neuropsychology of language, and numerical cognition.