Acalculia

Last updated
Acalculia
Specialty Psychiatry, Neurology

Acalculia is an acquired impairment in which people have difficulty performing simple mathematical tasks, such as adding, subtracting, multiplying and even simply stating which of two numbers is larger. Acalculia is distinguished from dyscalculia in that acalculia is acquired late in life due to neurological injury such as stroke, while dyscalculia is a specific developmental disorder first observed during the acquisition of mathematical knowledge. The name comes from the Greek "a" meaning "not" and Latin "calculare", which means "to count".

Contents

Signs and symptoms

Calculation impairments include the inability to perform simple mathematical operations, such as addition, subtraction, division, and multiplication. [1]

As calculation involves the integration of several cognitive skills, it is understood that an individual with acalculia (or calculation difficulties) is deficient in any of the following four realms: 1) understanding that every number represents a value and immediately registering this value, 2) recognizing a number's value with respect to other numbers, 3) knowing a number's location in series of numbers, and 4) association of a numerical symbol with its name, spoken verbally. Young schoolchildren are presented with mathematical concepts in a cumulative manner. Advancement requires the grasping of fundamental concepts before progressing to more difficult and involved concepts. There is a natural variation in the speed with which young schoolchildren grasp mathematical concepts, and those that have extreme difficulty retaining the foundations of mathematical concepts (such as global quantification or numerosity perception) are considered to have developmental dyscalculia. [1]

Variations

Acalculia is associated with lesions of the parietal lobe (especially the angular gyrus) and the frontal lobe and can be an early sign of dementia. Acalculia is sometimes observed as a "pure" deficit, but is commonly observed as one of a constellation of symptoms, including agraphia, finger agnosia and right-left confusion, after damage to the left angular gyrus, known as Gerstmann's syndrome. [2] [3]

Studies of patients with lesions to the parietal lobe have demonstrated that lesions to the angular gyrus tend to lead to greater impairments in memorized mathematical facts, such as multiplication tables, with relatively unimpaired subtraction abilities. Conversely, patients with lesions in the region of the intraparietal sulcus tend to have greater deficits in subtraction, with preserved multiplication abilities. [4] These double dissociations lend support to the idea that different regions of the parietal cortex are involved in different aspects of numerical processing.

Cause

Damage to the left angular gyrus is known to cause computational difficulties like those associated with primary acalculia and anarithmetia. However, damage to various but not necessarily identified areas of the brain can cause computational difficulties, as various cognitive functions are necessary to execute mathematical calculations. [1]

Diagnosis

Because acalculia is a symptom of the more commonly known Gerstmann's syndrome, it may be difficult to solely diagnose acalculia. Instead, it may be labeled as one of its symptoms, and lead to the eventual diagnosis of Gerstmann's syndrome. "Provided that general mental impairment and significant aphasic disorder can be excluded as primary factors, the presentation of deficits such as agraphia, acalculia, and right-left confusion should alert the clinician to the possibility of focal posterior parietal lobe disease." [5] (Disorders) Structural and functional neuroimaging may be of further value in determining the existence of underlying neurologic abnormalities. [5]

Screening

Common screening procedures for acalculia include asking the patient to answer questions about order, conducting memory tests to rule out the possibility of a mental disorder, confrontation naming (naming parts of objects), reading tests, writing tests, calculation tests, finger naming, clock drawing, and left/right orientation testing. The writing tests, spelling tests, finger naming, and left/right orientation are all tests to confirm the presence of Gerstmann's syndrome. Acalculia is one out of four defining components of Gerstmann's syndrome; the other three components are agraphia, finger agnosia, and right/left confusion. [6] Typically, acalculia is present because of Gerstmann's syndrome or it is linked with other disorders. It is imperative to note that there is "difficulty separating calculation disorders from disruptions in other domains". This is why testing functions besides calculation abilities is crucial for the screening of acalculia- so that other disorders can be ruled out. More extensive testing includes "brain mapping techniques such as position emission tomography (PET), functional magnetic resonance imaging (fMRI), and event related potentials (ERP), which have helped to illuminate some of the functional anatomical relationships for number processing". [7]

A basic examination of numerical abilities in brain-damaged patients should include both verbal and non-verbal aspects of number processing. The following tests are suggested:

Treatment

Gerstmann syndrome and similar symptom combinations are outcomes, not diseases. Treatment, therefore, is dedicated to the underlying neurological abnormality. Cognitive rehabilitation may be useful for the symptoms that interfere with activities of daily life, such as agraphia and acalculia. [5]

There are several ways in which rehabilitation of acalculia is carried out. Tsvetkova proposes using the "number reconstruction" method. It is started by incorporating certain "visual elements (e.g., completing eight, starting from the number 3), looking for certain elements within a number (e.g., looking for the number 1 in the number 4), and finally, performing a verbal analysis of the similarities and differences that can be observed between numbers". [9] At the same time that these number reconstruction technique is used, spatial orientation exercises, comprehension of the right-to-left relationship, and visual analysis of geometrical objects and forms should be developed. [1]

In a more basic form, the method used was rote practice: the retrieval of simple arithmetical facts through drill [10] or through conceptual training, [10] [11] or the creation of strategies for solving concrete problems. [12]

Sohlberg and Mateer have said that "treatment should then include exercises that permit spatial analysis and visual motor ability training." Rehabilitation tasks are implemented following a program that progressively increases difficulty, beginning with simple movements designed for reaching for or indicating objects following by copying figures in two dimensions, and concluding with the construction of three-dimensional figures. [13]

In a case study, Rosselli and Ardila describe the rehabilitation of a 58-year-old woman with spatial alexia, agraphia, and acalculia associated to a vascular injury in the right hemisphere. [14] The patient could adequately perform oral calculations but was completely incapable of performing written arithmetical operations with numbers composed of two or more digits. In a special test of written arithmetical operations (addition, subtraction, multiplication, and division), and initial score of 0/20 was obtained. She was observed to have mixed up the arithmetical procedures and inadequately oriented the columns in mathematical problems. The rehabilitation techniques implemented included the following:

  1. "Using short paragraphs with a red vertical line placed on the left margin and with the lines numbered on the left and right sides, the patient, using her index finger, had to look for the numbers corresponding to each line. The clues (vertical line and numbers) were progressively eliminated.
  2. In a text with no more than 12 lines, the patient had to complete the missing letters (i.e., perform sequential and ordered spatial exploration).
  3. Letter cancellation exercises were repeated constantly, and clues to facilitate their execution were included. Time and precision were recorded.
  4. In spontaneous writing exercises using lined paper with a thick colored line in the left margin, the patient had to look for the vertical line when finishing each line. Later, the line was eliminated, but the patient had to verbalize (initially aloud and later to herself) and explore to the extreme left before beginning to read the next line.
  5. To facilitate the relearning of numbers through dictation, squares were used to place the numbers in space, and the concepts of hierarchy were practiced permanently (units, tens, hundreds, etc.).
  6. To provide training in arithmetical operations, she was given in writing additions, subtractions, multiplications, and divisions with digits separated in columns by thick colored lines and the tops of the columns were numbered (from right to left). The patient had to verbalize the arithmetical procedures and, with her right index finger, look for the left margin before she could pass to the next column. Later, the patient herself would write the operations she was dictated. The techniques described previously were proven useful 8 months after the treatment was started. The patient presented significant improvement but in no way a complete recovery." [1]

Individuals with acalculia generally live normal lives, unless there are other disabilities or traumatic injuries present that prevent normal living. Details from a case study published in 2003 described the condition of a 55-year-old woman living with acalculia. "In addition to writing and calculation deficits, both spelling and reading had declined. Lapses of memory occurred occasionally. Despite these deficits, daily living activities remained intact". [7] Another case study published in 1990 described the condition and management of a former female accountant who had "suffered a small circumscribed left parietal subdural hematoma in an auto accident." She was able to speak, read, and write normally, but she was unable to perform simple addition past the number ten. The case study reports that the patient also demonstrated "severe finger agnosia, and in fact the finger agnosia appeared to be directly related to her inability to perform calculations." The patient was somewhat able to manage her acalculia by visiting a therapist who worked with her specifically on finger recognition tasks, especially on finger calculations. This therapy raised her mathematical ability to a high school level after she received treatment for a number of months. [15]

Epidemiology

"Gerstmann syndrome and similar posterior parietal symptom combinations (like acalculia) are usually the result of focal cerebrovascular disease in a posterior branch of the left middle cerebral artery or a broader zone infarct, usually involving the angular gyrus or subjacent white matter (Brodmann area 39). In rare cases, traumatic brain injury of an expanding neoplasm in this same region can cause all or elements (acalculia is one of four elements) of the symptoms of this syndrome". [6]

History

The term "acalculia" was coined by Henschen in 1925; it refers to the decrease in cognitive capacity for calculation that results from damage to the brain. Earlier, in 1908, researchers Lewandowsky and Stadelmann published the first report of an individual with calculation impairment due to brain damage. The individual had trouble performing calculations on paper and mentally. Further, he had difficulty recognizing arithmetic symbols. The report was key in that it established calculation disorders as separate from language disorders, as the two were formerly associated. Henshcen's research was consistent with Lewandowsky's and Stadelmann's finding. From his research, he was also able to propose that certain areas of the brain played particular roles involved in the understanding and execution of calculation. These areas include the third frontal convolution (pronunciation of numbers), the angular gyrus and the fissure interparietalis (reading of numbers), and the angular gyrus again for the writing of numbers. Shortly after Henshen's advances, Berger in 1926 distinguished between primary and secondary acalculia. Primary acalculia is a "pure" condition in which an individual can neither comprehend mathematical concepts nor perform mathematical operations. Secondary acalculia is a loss of calculation abilities that stems from other cognitive difficulties, such as memory. It has been questioned whether primary acalculia can exist independently of other cognitive impairments. In 1936, Lindquist proposed that lesions of different areas of the brain can cause different calculation defects, and that there are therefore several variations of acalculia. In 1940, Gerstmann claimed that acalculia is associated with aspects of Gerstmann's syndrome, which include right-left confusion, agraphia, and digital agnosia. In 1983, Boller and Grafman further concluded that calculation difficulties can also arise from various shortcomings, such as the inability to assign value to the name of a number. Little research has been done on acalculia, despite the fact the calculation is considered an essential, upper-level cognitive skill. However, calculation skills are assessed in neuropsychological exams such as the Mini-Mental State Examination (MMSE). There exist no norms for Acalculia against which a person can be compared to assess his/her level of cognitive impairment with regards to calculation abilities. [1]

See also

Related Research Articles

Language center Speech processing in the brain

In neuroscience and psychology, the term language center refers collectively to the areas of the brain which serve a particular function for speech processing and production. Language is a core system, which gives humans the capacity to solve difficult problems and provides them with a unique type of social interaction. Language allows individuals to attribute symbols to specific concepts and display them through sentences and phrases that follow proper grammatical rules. Moreover, speech is the mechanism in which language is orally expressed.

Agnosia Medical condition

Agnosia is the inability to process sensory information. Often there is a loss of ability to recognize objects, persons, sounds, shapes, or smells while the specific sense is not defective nor is there any significant memory loss. It is usually associated with brain injury or neurological illness, particularly after damage to the occipitotemporal border, which is part of the ventral stream. Agnosia only affects a single modality, such as vision or hearing. More recently, a top-down interruption is considered to cause the disturbance of handling perceptual information.

Agraphia is an acquired neurological disorder causing a loss in the ability to communicate through writing, either due to some form of motor dysfunction or an inability to spell. The loss of writing ability may present with other language or neurological disorders; disorders appearing commonly with agraphia are alexia, aphasia, dysarthria, agnosia, acalculia and apraxia. The study of individuals with agraphia may provide more information about the pathways involved in writing, both language related and motoric. Agraphia cannot be directly treated, but individuals can learn techniques to help regain and rehabilitate some of their previous writing abilities. These techniques differ depending on the type of agraphia.

Anomic aphasia Medical condition

Anomic aphasia is a mild, fluent type of aphasia where individuals have word retrieval failures and cannot express the words they want to say. Anomia is a deficit of expressive language. Anomia is a symptom of all forms of aphasia, but patients whose primary deficit is word retrieval are diagnosed with anomic aphasia. Individuals with aphasia who display anomia can often describe an object in detail and maybe even use hand gestures to demonstrate how the object is used, but cannot find the appropriate word to name the object. Patients with anomic aphasia have relatively preserved speech fluency, repetition, comprehension, and grammatical speech.

Parietal lobe Part of the brain responsible for sensory input and some language processing

The parietal lobe is one of the four major lobes of the cerebral cortex in the brain of mammals. The parietal lobe is positioned above the temporal lobe and behind the frontal lobe and central sulcus.

Dyscalculia is a disability resulting in difficulty learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, performing mathematical calculations and learning facts in mathematics. It is sometimes informally known as "math dyslexia," though this can be misleading as dyslexia is a different condition from dyscalculia.

Astereognosis is the inability to identify an object by active touch of the hands without other sensory input, such as visual or sensory information. An individual with astereognosis is unable to identify objects by handling them, despite intact elementary tactile, proprioceptive, and thermal sensation. With the absence of vision, an individual with astereognosis is unable to identify what is placed in their hand based on cues such as texture, size, spatial properties, and temperature. As opposed to agnosia, when the object is observed visually, one should be able to successfully identify the object.

Angular gyrus Gyrus of the parietal lobe of the brain

The angular gyrus is a region of the brain lying mainly in the anterolateral region of the parietal lobe, near the superior edge of the temporal lobe, and immediately posterior to the supramarginal gyrus. Its significance is in transferring visual information to Wernicke's area, in order to make meaning out of visually perceived words. It is also involved in a number of processes related to language, number processing and spatial cognition, memory retrieval, attention, and theory of mind. It is Brodmann area 39 of the human brain.

Inferior parietal lobule Portion of the parietal lobe of the brain

The inferior parietal lobule lies below the horizontal portion of the intraparietal sulcus, and behind the lower part of the postcentral sulcus. Also known as Geschwind's territory after Norman Geschwind, an American neurologist, who in the early 1960s recognised its importance. It is a part of the parietal lobe.

Stanislas Dehaene French cognitive neuroscientist

Stanislas Dehaene is a French author and cognitive neuroscientist whose research centers on a number of topics, including numerical cognition, the neural basis of reading and the neural correlates of consciousness. As of 2017, he is a professor at the Collège de France and, since 1989, the director of INSERM Unit 562, "Cognitive Neuroimaging".

Autotopagnosia from the Greek a and gnosis, meaning "without knowledge", topos meaning "place", and auto meaning "oneself", autotopagnosia virtually translates to the "lack of knowledge about one's own space," and is clinically described as such.

In human developmental psychology or non-human primate experiments, ordinal numerical competence or ordinal numerical knowledge is the ability to count objects in order and to understand the greater than and less than relationships between numbers. It has been shown that children as young as two can make some ordinal numerical decisions. There are studies indicating that some non-human primates, like chimpanzees and rhesus monkeys have some ordinal numerical competence.

Pure alexia, also known as agnosic alexia or alexia without agraphia or pure word blindness, is one form of alexia which makes up "the peripheral dyslexia" group. Individuals who have pure alexia have severe reading problems while other language-related skills such as naming, oral repetition, auditory comprehension or writing are typically intact.

The neuroanatomy of memory encompasses a wide variety of anatomical structures in the brain.

Gerstmann syndrome Neuropsychological disorder caused by damage to the inferior parietal lobule

Gerstmann syndrome is a neuropsychological disorder that is characterized by a constellation of symptoms that suggests the presence of a lesion usually near the junction of the temporal and parietal lobes at or near the angular gyrus. Gerstmann syndrome is typically associated with damage to the inferior parietal lobule of the dominant hemisphere. It is classically considered a left-hemisphere disorder, although right-hemisphere damage has also been associated with components of the syndrome.

Amorphosynthesis, also called a hemi-sensory deficit, is a neuropsychological condition in which a patient experiences unilateral inattention to sensory input. This phenomenon is frequently associated with damage to the right cerebral hemisphere resulting in severe sensory deficits that are observed on the contralesional (left) side of the body. A right-sided deficit is less commonly observed and the effects are reported to be temporary and minor. Evidence suggests that the right cerebral hemisphere has a dominant role in attention and awareness to somatic sensations through ipsilateral and contralateral stimulation. In contrast, the left cerebral hemisphere is activated only by contralateral stimuli. Thus, the left and right cerebral hemispheres exhibit redundant processing to the right-side of the body and a lesion to the left cerebral hemisphere can be compensated by the ipsiversive processes of the right cerebral hemisphere. For this reason, right-sided amorphosynthesis is less often observed and is generally associated with bilateral lesions.

Educational neuroscience is an emerging scientific field that brings together researchers in cognitive neuroscience, developmental cognitive neuroscience, educational psychology, educational technology, education theory and other related disciplines to explore the interactions between biological processes and education. Researchers in educational neuroscience investigate the neural mechanisms of reading, numerical cognition, attention and their attendant difficulties including dyslexia, dyscalculia and ADHD as they relate to education. Researchers in this area may link basic findings in cognitive neuroscience with educational technology to help in curriculum implementation for mathematics education and reading education. The aim of educational neuroscience is to generate basic and applied research that will provide a new transdisciplinary account of learning and teaching, which is capable of informing education. A major goal of educational neuroscience is to bridge the gap between the two fields through a direct dialogue between researchers and educators, avoiding the "middlemen of the brain-based learning industry". These middlemen have a vested commercial interest in the selling of "neuromyths" and their supposed remedies.

The approximate number system (ANS) is a cognitive system that supports the estimation of the magnitude of a group without relying on language or symbols. The ANS is credited with the non-symbolic representation of all numbers greater than four, with lesser values being carried out by the parallel individuation system, or object tracking system. Beginning in early infancy, the ANS allows an individual to detect differences in magnitude between groups. The precision of the ANS improves throughout childhood development and reaches a final adult level of approximately 15% accuracy, meaning an adult could distinguish 100 items versus 115 items without counting. The ANS plays a crucial role in development of other numerical abilities, such as the concept of exact number and simple arithmetic. The precision level of a child's ANS has been shown to predict subsequent mathematical achievement in school. The ANS has been linked to the intraparietal sulcus of the brain.

Topographical disorientation is the inability to orient oneself in one's surroundings, sometimes as a result of focal brain damage. This disability may result from the inability to make use of selective spatial information or to orient by means of specific cognitive strategies such as the ability to form a mental representation of the environment, also known as a cognitive map. It may be part of a syndrome known as visuospatial dysgnosia.

Finger agnosia, first defined in 1924 by Josef Gerstmann, is the loss in the ability to distinguish, name, or recognize the fingers—not only the patient's own fingers, but also the fingers of others, and drawings and other representations of fingers. It is one of a tetrad of symptoms in Gerstmann syndrome, although it is also possible for finger agnosia to exist on its own without any other disorders. Usually, lesions to the left angular gyrus and posterior parietal areas can lead to finger agnosia.

References

  1. 1 2 3 4 5 6 Ardila, Alfredo, and Monica Rosselli. "Acalculia and Dyscalculia." Www.springerlink.com. Neuropsychology Review, Dec. 2002. Web. 24 Apr. 2012.
  2. Gerstmann, J. (1940). Syndrome of finger agnosia, disorientation for right and left, agraphia, acalculia. Archives of Neurology and Psychology 44, 398–408
  3. Mayer, E. et al. (1999). A pure case of Gerstmann syndrome with a subangular lesion. Brain 122, 1107–1120
  4. Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219-250
  5. 1 2 3 Disorders, National Organization for Rare. Nord Guide to Rare Disorders. Lippincott Williams & Wilkins, 2003. Print.
  6. 1 2 NORD Guide to Rare Disorders. Philadelphia: Lippincott Williams & Wilkins, 2003. Print.
  7. 1 2 D'Esposito, Mark. Neurological Foundations of Cognitive Neuroscience. Cambridge, Massachusetts: MIT, 2003. Print.
  8. Cohen, Laurent, Anna J. Wilson, Véronique Izard, and Stanislas Dehaene. "Acalculia."Unicog.org. Web. 24 Apr. 2012.
  9. Tsvetkova, L. S. (1996). Acalculia: Aproximacion neuropsicologica al analisis de la alteracion y la rehabilitacion del calculo. In: Ostrosky, F., Ardila, A., and Dochy, R. (eds.), Rehabilitacion neuropsicologica, Planeta, Mexico, pp. 114–131.
  10. 1 2 Girelli L, Delazer M, Semenza C, Denes G. The representation of arithmetical facts: evidence from two rehabilitation studies. Cortex 1996; 32: 49-66.
  11. Domahs F, Bartha, L., Delazer, M. Rehabilitation of arithmetic abilities: Different intervention strategies for multiplication. Brain and Language 2003; 87: 165-166.
  12. Fasotti L, Bremer JJCB, Eling PATM. Influence of improved test encoding on arithmetical word problem solving after frontal lobe damage. Neuropsychological rehabilitation 1992a; 2: 3-20.
  13. Sohlberg, M. M., and Mateer, C. A. (1989). Introduction to Cognitive Rehabilitation: Theory and Practice, Guilford Press, New York.
  14. "The rehabilitation was based on the rehabilitation of unilateral spatial neglect and associated spatial difficulties." (Rosselli and Ardila 1996).
  15. Joseph, Rhawn. Neuropsychology, Neuropsychiatry, and Behavioral Neurology. New York: Plenum, 1990. Print.