BL Lacertae

Last updated
BL Lacertae
BL Lacertae Pan-STARRS DR1.jpg
The active galaxy BL Lacertae (center), from the Pan-STARRS Data Release 1. The bright object at the left is a foreground star within the Milky Way. Green pixels are artifacts due to data processing.
Observation data (Epoch J2000)
Constellation Lacerta
Right ascension 22h 02m 43.3s
Declination +42° 16 40
Redshift 0.07
Distance 0.9  Gly (0.276  Gpc)
Type BL Lac
Apparent magnitude  (V)var. ~14 to ~17
Other designations
OY+401, VR 42.22.01
See also: Quasar, List of quasars

BL Lacertae or BL Lac is a highly variable, extragalactic active galactic nucleus (AGN or active galaxy). It was first discovered by Cuno Hoffmeister in 1929, [1] but was originally thought to be an irregular variable star in the Milky Way galaxy and so was given a variable star designation. In 1968, the "star" was identified by John Schmitt at the David Dunlap Observatory as a bright, variable radio source. A faint trace of a host galaxy was also found. [2] In 1974, Oke and Gunn measured the redshift of BL Lacertae as z = 0.07, corresponding to a recession velocity of 21,000 km/s with respect to the Milky Way. [3] The redshift figure implies that the object lies at a distance of 900 million light years.

A visual band light curve for BL Lacertae, plotted from AAVSO data BLLacLightCurve.png
A visual band light curve for BL Lacertae, plotted from AAVSO data

Due to its early discovery, BL Lacertae became the prototype and namesake of the class of active galactic nuclei known as "BL Lacertae objects" or "BL Lac objects". This class is distinguished by rapid and high-amplitude brightness variations and by optical spectra devoid (or nearly devoid) of the broad emission lines characteristic of quasars. These characteristics are understood to result from relativistic beaming of emission from a jet of plasma ejected from the vicinity of a supermassive black hole. BL Lac objects are also categorized as a type of blazar.

BL Lacertae changes in apparent magnitude over fairly small time periods, typically between values of 14 and 17. In January 2021, it exhibited extreme flaring behavior and was reported to reach magnitude 11.45 in the R filter band. [5]

Related Research Articles

<span class="mw-page-title-main">Caelum</span> Constellation in the southern celestial hemisphere

Caelum is a faint constellation in the southern sky, introduced in the 1750s by Nicolas Louis de Lacaille and counted among the 88 modern constellations. Its name means "chisel" in Latin, and it was formerly known as Caelum Sculptorium ; it is a rare word, unrelated to the far more common Latin caelum, meaning "sky", "heaven", or "atmosphere". It is the eighth-smallest constellation, and subtends a solid angle of around 0.038 steradians, just less than that of Corona Australis.

<span class="mw-page-title-main">Nova</span> Nuclear explosion in a white dwarf star

A nova is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star that slowly fades over weeks or months. All observed novae involve white dwarfs in close binary systems, but causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars.

<span class="mw-page-title-main">Quasar</span> Active galactic nucleus containing a supermassive black hole

A quasar is an extremely luminous active galactic nucleus (AGN). It is sometimes known as a quasi-stellar object, abbreviated QSO. The emission from an AGN is powered by a supermassive black hole with a mass ranging from millions to tens of billions of solar masses, surrounded by a gaseous accretion disc. Gas in the disc falling towards the black hole heats up and releases energy in the form of electromagnetic radiation. The radiant energy of quasars is enormous; the most powerful quasars have luminosities thousands of times greater than that of a galaxy such as the Milky Way. Quasars are usually categorized as a subclass of the more general category of AGN. The redshifts of quasars are of cosmological origin.

<span class="mw-page-title-main">Serpens</span> Constellation split into two non-contiguous parts

Serpens is a constellation in the northern celestial hemisphere. One of the 48 constellations listed by the 2nd-century astronomer Ptolemy, it remains one of the 88 modern constellations designated by the International Astronomical Union. It is unique among the modern constellations in being split into two non-contiguous parts, Serpens Caput to the west and Serpens Cauda to the east. Between these two halves lies the constellation of Ophiuchus, the "Serpent-Bearer". In figurative representations, the body of the serpent is represented as passing behind Ophiuchus between Mu Serpentis in Serpens Caput and Nu Serpentis in Serpens Cauda.

An active galactic nucleus (AGN) is a compact region at the center of a galaxy that emits a significant amount of energy across the electromagnetic spectrum, with characteristics indicating that this luminosity is not produced by the stars. Such excess, non-stellar emissions have been observed in the radio, microwave, infrared, optical, ultra-violet, X-ray and gamma ray wavebands. A galaxy hosting an AGN is called an active galaxy. The non-stellar radiation from an AGN is theorized to result from the accretion of matter by a supermassive black hole at the center of its host galaxy.

<span class="mw-page-title-main">3C 273</span> Brightest quasar from Earth located in the constellation Virgo

3C 273 is a quasar located at the center of a giant elliptical galaxy in the constellation of Virgo. It was the first quasar ever to be identified and is the visually brightest quasar in the sky as seen from Earth, with an apparent visual magnitude of 12.9. The derived distance to this object is 749 megaparsecs. The mass of its central supermassive black hole is approximately 886 million times the mass of the Sun.

<span class="mw-page-title-main">Lacerta</span> Constellation in the northern celestial hemisphere

Lacerta is one of the 88 modern constellations defined by the International Astronomical Union. Its name is Latin for lizard. A small, faint constellation, it was defined in 1687 by the astronomer Johannes Hevelius. Its brightest stars form a "W" shape similar to that of Cassiopeia, and it is thus sometimes referred to as 'Little Cassiopeia'. It is located between Cygnus, Cassiopeia and Andromeda on the northern celestial sphere. The northern part lies on the Milky Way.

<span class="mw-page-title-main">Blazar</span> Very compact quasi-stellar radio source

A blazar is an active galactic nucleus (AGN) with a relativistic jet directed very nearly towards an observer. Relativistic beaming of electromagnetic radiation from the jet makes blazars appear much brighter than they would be if the jet were pointed in a direction away from Earth. Blazars are powerful sources of emission across the electromagnetic spectrum and are observed to be sources of high-energy gamma ray photons. Blazars are highly variable sources, often undergoing rapid and dramatic fluctuations in brightness on short timescales. Some blazar jets appear to exhibit superluminal motion, another consequence of material in the jet traveling toward the observer at nearly the speed of light.

<span class="mw-page-title-main">BL Lacertae object</span> Type of active galactic nucleus

A BL Lacertae object or BL Lac object is a type of active galactic nucleus (AGN) or a galaxy with such an AGN, named after its prototype, BL Lacertae. In contrast to other types of active galactic nuclei, BL Lacs are characterized by rapid and large-amplitude flux variability and significant optical polarization. Because of these properties, the prototype of the class was originally thought to be a variable star. When compared to the more luminous active nuclei (quasars) with strong emission lines, BL Lac objects have spectra dominated by a relatively featureless non-thermal emission continuum over the entire electromagnetic range. This lack of spectral lines historically hindered identification of the nature and distance of such objects.

<span class="mw-page-title-main">V500 Aquilae</span> 1943 Nova event in the constellation Aquila

V500 Aquilae also known as Nova Aquilae 1943 was a nova which appeared in the constellation Aquila, very near the star Altair, in 1943. It was discovered by Cuno Hoffmeister on photographic plates taken at Sonneberg Observatory on 5 September 1943, when it had a photographic magnitude of 12. It reached its peak brightness sometime between 13 April 1943 when it was fainter than photographic magnitude 13.5, and 2 May 1943 when its photographic magnitude was 6.55.

<span class="mw-page-title-main">P Cygni</span> Variable star in the constellation Cygnus

P Cygni is a variable star in the constellation Cygnus. The designation "P" was originally assigned by Johann Bayer in Uranometria as a nova. Located about 5,300 light-years from Earth, it is a hypergiant luminous blue variable (LBV) star of spectral type B1-2 Ia-0ep that is one of the most luminous stars in the Milky Way.

<span class="mw-page-title-main">Markarian 421</span> Blazar located in the constellation Ursa Major

Markarian 421 is a blazar located in the constellation Ursa Major. The object is an active galaxy and a BL Lacertae object, and is a strong source of gamma rays. It is about 397 million light-years to 434 million light-years (133Mpc) from the Earth. It is one of the closest blazars to Earth, making it one of the brightest quasars in the night sky. It is suspected to have a supermassive black hole (SMBH) at its center due to its active nature. An early-type high inclination spiral galaxy is located 14 arc-seconds northeast of Markarian 421.

<span class="mw-page-title-main">3C 371</span> Active galaxy in the constellation Draco

3C 371 is a BL Lac object located in the constellation Draco. With a redshift of 0.051, this active galaxy is about 730 million light-years away.

<span class="mw-page-title-main">U Lacertae</span> Binary star in the constellation Lacerta

U Lacertae is a spectroscopic binary star in the constellation Lacerta.

<span class="mw-page-title-main">TON 618</span> Quasar and Lyman-alpha blob in the constellation Canes Venatici

TON 618 is a hyperluminous, broad-absorption-line, radio-loud quasar and Lyman-alpha blob located near the border of the constellations Canes Venatici and Coma Berenices, with the projected comoving distance of approximately 18.2 billion light-years from Earth. It possesses one of the most massive black holes ever found, at 40.7 billion M.

<span class="mw-page-title-main">YZ Reticuli</span> 2020 Nova in the constellation Reticulum

YZ Reticuli, also known as Nova Reticuli 2020 was a naked eye nova in the constellation Reticulum discovered on July 15, 2020. Previously it was known as a VY Sculptoris type object with the designation MGAB-V207.

<span class="mw-page-title-main">AP Librae</span> Active galactic nucleus in the constellation Libra

AP Librae is a BL Lacertae object located at a distance of 700 million light years in the southern constellation of Libra. In the visual band it is one of the most active blazars known. AP Lib is surrounded by an extended source with a spectrum characteristic of a red-shifted giant elliptical galaxy. The derived visual magnitude of this region is 15.0, and it follows a radially decreasing brightness that is characteristic of an elliptical. Seven fainter galaxies are visible within an angular radius of 9′, suggesting it is the brightest member of a galactic cluster.

<span class="mw-page-title-main">PKS 2131-021</span> Quasar in the constellation Aquarius

PKS 2131-021 is quasar and a BL Lacerate object, producing an astrophysical jet. lt is located in the constellation Aquarius and classified as a blazar, a type of active galactic nucleus whose relativistic jet points in the direction towards Earth.

<span class="mw-page-title-main">BL Herculis</span> Variable star in the constellation Hercules

BL Herculis is a variable star in the northern constellation of Hercules. Its apparent visual magnitude ranges from 9.70 to 10.62, so it is never bright enough to be seen with the naked eye, even with ideal observing conditions. Its distance from the Sun is about 3,850 light-years, and it is moving away from us at 18 km/sec. It is the prototype of the BL Herculis class of variable star, a short-period subset of the pulsating Cepheid variables.

<span class="mw-page-title-main">PKS 1144-379</span> Quasar in the constellation Centaurus

PKS 1144-379 also known as PKS B1144-379, is a quasar located in the constellation of Centaurus. At the redshift of 1.048, the object is located nearly 8 billion light-years from Earth.

References

  1. Hoffmeister, Cuno (1929). "354 neue Veränderliche". Astronomische Nachrichten. 236 (15): 233–244. Bibcode:1929AN....236..233H. doi:10.1002/asna.19292361502.
  2. Schmitt, John L. (May 1968). "BL Lac identified as a Radio Source". Nature. 218 (5142): 663. Bibcode:1968Natur.218..663S. doi: 10.1038/218663a0 . S2CID   4213061.
  3. Oke, J. B.; Gunn, J. E. (1974). "The Distance of BL Lacertae". Astrophysical Journal Letters. 189: 5. Bibcode:1974ApJ...189L...5O. doi: 10.1086/181450 .
  4. "Download Data". aavso.org. AAVSO. Retrieved 1 October 2021.
  5. Bonnoli, Giacomo. "ATel #14329". The Astronomer's Telegram. Retrieved 20 January 2021.