DI Lacertae

Last updated
DI Lacertae
DILacLocation.png
Location of DI Lacertae (circled in red)
Observation data
Epoch J2000.0        Equinox J2000.0 (ICRS)
Constellation Lacerta
Right ascension 22h 35m 48.495s [1]
Declination 52° 42 59.64 [1]
Apparent magnitude  (V)4.6v 14.9p [2]
Characteristics
Variable type Nova
Astrometry
Proper motion (μ)RA: −1.794 [1]   mas/yr
Dec.: −2.362 [1]   mas/yr
Parallax (π)0.5783 ± 0.0173  mas [1]
Distance 5,600 ± 200  ly
(1,730 ± 50  pc)
Absolute magnitude  (MV)−7.2 +3.8 [3]
Details
White dwarf
Mass 0.91 [3]   M
Other designations
Nova Lac 1910, DI  Lac, HD  214239, AAVSO 2231+52
Database references
SIMBAD data
The light curve of nova DI Lacertae, plotted from data presented by Shapley. If multiple measurements with identical times were reported, they were averaged before plotting The red pre-eruption point is from Robinson. DILacLightCurve.png
The light curve of nova DI Lacertae, plotted from data presented by Shapley. If multiple measurements with identical times were reported, they were averaged before plotting The red pre-eruption point is from Robinson.

DI Lacertae or Nova Lacertae 1910 was a nova in constellation Lacerta which appeared in 1910. It was discovered by Thomas Henry Espinell Compton Espin at Wolsingham Observatory on 30 Dec 1910, at which time it was an 8th magnitude object. Subsequent examination of pre-discovery photographic plates showed that the outburst occurred sometime between 17 November 1910 and 23 November 1910. [6] It reached a peak brightness of magnitude 4.6 on 26 November 1910, making it visible to the naked eye. [3] [4] Before the nova event DI Lacertae was a 14th magnitude star, [7] and by 1950 it had returned to 14th magnitude. [8]

DI Lacertae dropped from peak brightness by 3 magnitudes in just 43 days, making it a "fast nova". [9] [10]

All novae are binary stars, with a "donor" star orbiting a white dwarf. The two stars are so close to each other that matter is transferred from the donor star to the white dwarf. In the case of DI Lacertae, the orbital period for the binary pair is 13.050 hours, which is unusually long for a nova. [11] The mass of the white dwarf has been estimated to be 0.91±0.2M In 2017 Sion et al. presented analysis of ultraviolet spectra from the Far Ultraviolet Spectroscopic Explorer and International Ultraviolet Explorer spacecraft, and found the best fit for DI Lacertae to be an accretion disk with a mass accretion rate of 10−10M per year with a 30,000 Kelvin white dwarf. [12] Darnley et al. argue that the donor star is probably a main sequence star or, less probably, a subdwarf. [11]

Related Research Articles

<span class="mw-page-title-main">GK Persei</span> Star in the constellation Perseus

GK Persei was a bright nova first observed on Earth in 1901. It was discovered by Thomas David Anderson, an Edinburgh clergyman, at 02:40 UT on 22 February 1901 when it was at magnitude 2.7. It reached a maximum magnitude of 0.2, the brightest nova of modern times until Nova Aquilae 1918. After fading into obscurity at about magnitude 12 to 13 during the early 20th century, GK Persei began displaying infrequent outbursts of 2 to 3 magnitudes. Since about 1980, these outbursts have become quite regular, typically lasting about two months and occurring about every three years. Thus, GK Persei seems to have changed from a classical nova like Nova Aquilae 1918 to something resembling a typical dwarf nova-type cataclysmic variable star.

<span class="mw-page-title-main">DQ Herculis</span> Nova in the constellation Hercules

DQ Herculis, or Nova Herculis 1934, was a slow, bright nova occurring in the northern constellation of Hercules in December 1934. This cataclysmic variable star was discovered on 13 December 1934 by J. P. M. Prentice from Stowmarket, Suffolk. It reached peak brightness on 22 December 1934 with an apparent magnitude of 1.5. The nova remained visible to the naked eye for several months.

<span class="mw-page-title-main">T Coronae Borealis</span> Recurrent nova in the constellation Corona Borealis

T Coronae Borealis, nicknamed the Blaze Star, is a recurrent nova in the constellation Corona Borealis. It was first discovered in outburst in 1866 by John Birmingham, though it had been observed earlier as a 10th magnitude star. It may have been observed in 1217 and in 1787 as well. It is expected to undergo an outburst again very soon; it could erupt again before August 2024.

<span class="mw-page-title-main">DN Geminorum</span> Star in the constellation Gemini

DN Geminorum or Nova Geminorum 1912 was a classical nova which lit up in 1912 in the constellation Gemini. It was discovered by Norwegian variable star observer Sigurd Einbu on March 12, 1912 before reaching peak brightness, which allowed early-stage spectra to be collected by Yerkes Observatory. The nova reached a maximum brightness of around 3.5 mag before declining, which means it was visible to the naked eye. Its brightness decreased over the following 36 days by 3 magnitudes as it gradually faded from sight. The light curve saw two maxima a few months after the outburst, along with strong oscillations. Today its brightness is visual magnitude 15.5.

<span class="mw-page-title-main">CP Lacertae</span> 1936 Nova seen in the constellation Lacerta

CP Lacertae was a nova, which lit up on June 18, 1936 in the constellation Lacerta. It was discovered independently by several observers including Leslie Peltier in the US, E. Loreta in Italy, and Kazuaki Gomi, a Japanese barber who discovered the nova during the 19 June 1936 total solar eclipse.

<span class="mw-page-title-main">BT Monocerotis</span> Nova seen in 1939

BT Monocerotis was a nova, which lit up in the constellation Monoceros in 1939. It was discovered on a spectral plate by Fred L. Whipple on December 23, 1939. BT Monocerotis is believed to have reached mag 4.5, which would have made it visible to the naked eye, but that value is an extrapolation; the nova was not observed at peak brightness Its brightness decreased after the outbreak by 3 magnitudes in 182 days, making it a "slow nova". The light curve for the eruption had a long plateau period.

<span class="mw-page-title-main">V849 Ophiuchi</span> Nova in the constellation Ophiuchus

V849 Ophiuchi or Nova Ophiuchi 1919 was a nova that erupted in 1919, in the constellation Ophiuchus, and reached a blue band brightness of magnitude 7.2. Joanna C. S. Mackie discovered the star while she was examining Harvard College Observatory photographic plates. The earliest plate it was visible on was exposed on August 20, 1919, when the star was at magnitude 9.4. It reached magnitude 7.5 on September 13 of that year. In its quiescent state it has a visual magnitude of about 18.8. V849 Ophiuchi is classified as a "slow nova"; it took six months for it to fade by three magnitudes.

<span class="mw-page-title-main">NQ Vulpeculae</span> 1976 Nova seen in the constellation Vulpecula

NQ Vulpeculae also known as Nova Vulpeculae 1976, was a nova that appeared in the constellation Vulpecula in 1976. It was discovered visually at 18:20 UT on October 21, 1976 by English amateur astronomer George Alcock. Its apparent magnitude at the time of discovery was 6.5 It reached its maximum brightness of magnitude 6.0 thirteen days after its discovery, at which point it may have been faintly visible to the naked eye. A few days after maximum brightness, it had faded to magnitude 8.3.

<span class="mw-page-title-main">DK Lacertae</span> 1950 Nova seen in the constellation Lacerta

DK Lacertae was a nova, which lit up in the constellation Lacerta in 1950. The nova was discovered by Charles Bertaud of the Paris Observatory on a photographic plate taken on 23 January 1950. At the time of its discovery, it had an apparent magnitude of 6.1. DK Lacertae reached peak magnitude 5.0, making it easily visible to the naked eye.

<span class="mw-page-title-main">V838 Herculis</span> 1991 Nova seen in the constellation Hercules

V838 Herculis, also known as Nova Herculis 1991, was a nova which occurred in the constellation Hercules in 1991. It was discovered by George Alcock of Yaxley, Cambridgeshire, England at 4:35 UT on the morning of 25 March 1991. He found it with 10×50 binoculars, and on that morning its apparent visual magnitude was 5. Palomar Sky Survey plates showed that before the outburst, the star was at photographic magnitude 20.6 and 18.25.

<span class="mw-page-title-main">V1494 Aquilae</span> Nova seen in 1999 in the constellation of Aquila

V1494 Aquilae or Nova Aquilae 1999 b was a nova which occurred during 1999 in the constellation Aquila and reached a brightness of magnitude 3.9 on 2 December 1999. making it easily visible to the naked eye. The nova was discovered with 14×100 binoculars by Alfredo Pereira of Cabo da Roca, Portugal at 18:50 UT on 1 December 1999, when it had a visual magnitude of 6.0.

<span class="mw-page-title-main">RX Andromedae</span> Cataclysmic variable star system in the constellation Andromeda

RX Andromedae is a variable star in the constellation of Andromeda. Although it is classified as a dwarf nova of the Z Camelopardalis (UGZ) type, it has shown low-luminosity periods typical of VY Sculptoris stars. However, for most of the time it varies from an apparent visual magnitude of 15.1 at minimum brightness to a magnitude of 10.2 at maximum brightness, with a period of approximately 13 days.

<span class="mw-page-title-main">RZ Gruis</span> Star in the constellation of Grus

RZ Gruis is a nova-like binary system in the constellation Grus composed of a white dwarf and an F-type main-sequence star. It is generally of apparent magnitude of 12.3 with occasional dimming to 13.4. Its components are thought to orbit each other roughly every 8.5 to 10 hours. It belongs to the UX Ursae Majoris subgroup of cataclysmic variable star systems, where material from the donor star is drawn to the white dwarf where it forms an accretion disc that remains bright and outshines the two component stars. The system is around 1,434 light-years away from Earth; or as much as 1,770 light years based on a Gaia parallax.

<span class="mw-page-title-main">16 Lacertae</span> Triple star system in the constellation Lacerta

16 Lacertae is a triple star system in the northern constellation of Lacerta, located about 1,580 light years from the Sun. It has the variable star designation EN Lacertae; 16 Lacertae is the Flamsteed designation. This system is visible to the naked eye as a faint blue-white hued star with a maximum apparent visual magnitude of +5.587. It is moving closer to the Earth with a heliocentric radial velocity of –12 km/s.

<span class="mw-page-title-main">EL Aquilae</span> 1927 nova in the constellation Aquila

EL Aquilae, also known as Nova Aquilae 1927 was a nova that appeared in 1927. It was discovered by Max Wolf on photographic plates taken at Heidelberg Observatory on 30 and 31 July 1927 when it had a photographic magnitude of 9. Subsequent searches of plates taken at the Harvard College Observatory showed the nova was fainter than magnitude 11.1 on 8 June 1927 and had flared to magnitude 6.4 on 15 June 1927. It declined from peak brightness at an average rate of 0.105 magnitudes per day, making it a fast nova, and ultimately dimmed to about magnitude 21. The 14.5 magnitude change from peak brightness to quiescence was unusually large for a nova.

<span class="mw-page-title-main">V368 Aquilae</span> Nova seen in 1936

V368 Aquilae, also known as Nova Aquilae 1936 no. 2 was the second nova which occurred in the constellation of Aquila during 1936. It was discovered on a photographic plate by Nils Tamm at Kvistaberg Observatory on 7 October 1936. At the time of discovery it was at photographic magnitude 7, and was already fading. Pre-discovery photographs showed that peak brightness occurred around 25 September 1936, at which time it had reached apparent magnitude 5.0, making it visible to the naked eye. The nova was described as being fiery red due to strong Hα emission, and for a time could be seen with binoculars simultaneously with V356 Aquilae, another nova which Nill Tamm had discovered a month earlier.

<span class="mw-page-title-main">GI Monocerotis</span> 1918 Nova in the constellation Monoceros

GI Monocerotis, also known as Nova Monocerotis 1918, was a nova that erupted in the constellation Monoceros during 1918. It was discovered by Max Wolf on a photographic plate taken at the Heidelberg Observatory on 4 February 1918. At the time of its discovery, it had a photographic magnitude of 8.5, and had already passed its peak brightness. A search of plates taken at the Harvard College Observatory showed that it had a photographic magnitude of 5.4 on 1 January 1918, so it would have been visible to the naked eye around that time. By March 1918 it had dropped to ninth or tenth magnitude. By November 1920 it was a little fainter than 15th magnitude.

<span class="mw-page-title-main">V1370 Aquilae</span> Nova that occurred in 1982

V1370 Aquilae, also known as Nova Aquilae 1982, is a nova that appeared in the constellation Aquila during 1982. It was discovered by Minoru Honda of Kurashiki, Japan at 20:30 UT on 27 January 1982. At that time the Sun had moved just far enough from Aquila to allow the nova to be seen in the morning sky. Although it was discovered photographically, its apparent magnitude was 6–7, making it potentially visible to the naked eye under ideal conditions. A possible magnitude 20 progenitor was located on the Palomar Sky Survey prints. Spectra of the object were taken in February 1982 at Asiago Astrophysical Observatory, which confirmed that it is a nova.

<span class="mw-page-title-main">SW Ursae Majoris</span> Variable star in the constellation Ursa Major

SW Ursae Majoris is a cataclysmic binary star system in the northern circumpolar constellation of Ursa Major, abbreviated SW UMa. During quiescence it has an apparent visual magnitude of 16.5–17, which is too faint to be visible to the naked eye. Based on parallax measurements, it is located at a distance of approximately 526 light years from the Sun.

<span class="mw-page-title-main">DW Ursae Majoris</span> Variable star in the constellation Ursa Major

DW Ursae Majoris is an eclipsing binary star system in the northern circumpolar constellation of Ursa Major, abbreviated DW UMa. It is a cataclysmic variable of the SX Sextanis type, consisting of a compact white dwarf that is accreting matter from an orbiting companion star. The brightness of this source ranges from an apparent visual magnitude of 13.6 down to magnitude 18, which is too faint to be viewed with the naked eye. The distance to this system is approximately 1,920 light years based on parallax measurements.

References

  1. 1 2 3 4 5 Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv: 2208.00211 . Bibcode:2023A&A...674A...1G. doi: 10.1051/0004-6361/202243940 . S2CID   244398875. Gaia DR3 record for this source at VizieR.
  2. Downes, Ronald; Webbink, Ronald F.; Shara, Michael M. (April 1997). "A Catalog and Atlas of Cataclysmic Variables-Second Edition". Publications of the Astronomical Society of the Pacific. 109: 345. Bibcode:1997PASP..109..345D. doi: 10.1086/133900 . S2CID   120396435.
  3. 1 2 3 Selvelli, Pierluigi; Gilmozzi, Roberto (February 2019). "A UV and optical study of 18 old novae with Gaia DR2 distances: mass accretion rates, physical parameters, and MMRD". Astronomy & Astrophysics. 622: A186. arXiv: 1903.05868 . Bibcode:2019A&A...622A.186S. doi: 10.1051/0004-6361/201834238 .
  4. 1 2 Shapley, Harlow (January 1933). "The photographic light curves of 11 novae". Annals of the Astronomical Observatory of Harvard College. 84 (5): 121–155. Bibcode:1933AnHar..84..121S.
  5. Robinson, E.L. (July 1975). "Preeruption light curves of novae". Astronomical Journal. 80: 515–524. Bibcode:1975AJ.....80..515R. doi:10.1086/111774.
  6. Duerbeck, Hilmar W. (March 1987). "A Reference Catalogue and Atlas of Galactic Novae". Space Science Reviews. 45 (1–2): 1–14. Bibcode:1987SSRv...45....1D. doi:10.1007/BF00187826. S2CID   115854775.
  7. Frost, E. B. (1911). "Observations of Nova Lacertae at the Yerkes Observatory". The Astrophysical Journal. 33: 410–417. Bibcode:1911ApJ....33..410F. doi:10.1086/141865.
  8. Steavenson, W.H. (January 1953). "Observations of novae, 1950, 1951 and 1952". Monthly Notices of the Royal Astronomical Society. 113 (2): 258. Bibcode:1953MNRAS.113..258S. doi: 10.1093/mnras/113.2.258 .
  9. Marin, E.; Shafter, A.W. (October 2009). "The Orbital Period of V368 Aquilae (Nova Aquilae 1936 No. 2". Publications of the Astronomical Society of the Pacific. 121 (884): 1090. arXiv: 0908.3703 . Bibcode:2009PASP..121.1090M. doi:10.1086/644647. S2CID   119192314.
  10. Ritter, H.; Kolb, U. (June 2003). "Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition)". Astronomy and Astrophysics. 404: 301–303. arXiv: astro-ph/0301444 . Bibcode:2003A&A...404..301R. doi: 10.1051/0004-6361:20030330 .
  11. 1 2 Darnley, M.J.; Ribeiro, V.A.R.M.; Bode, M.F.; Hounsell, R.A.; Williams, R.P. (February 2012). "On the Progenitors of Galactic Novae". The Astrophysical Journal. 746 (1): 61. arXiv: 1112.2589 . Bibcode:2012ApJ...746...61D. doi:10.1088/0004-637X/746/1/61. S2CID   119291027.
  12. Sion, Edward M.; et al. (2017). "Far Ultraviolet Spectroscopy of Old Novae. II. RR Pic, V533 Her, and DI Lac". The Astronomical Journal. 153 (3). 109. arXiv: 1701.05218 . Bibcode:2017AJ....153..109S. doi: 10.3847/1538-3881/153/3/109 . PMC   5810142 . PMID   29456254.