BS 7910

Last updated

BS 7910, guide to methods for assessing the acceptability of flaws in metallic structures, is a British Standard code of practice for the assessment of flaws (weld defects in particular) using fracture mechanics principles. The technique is also referred to as an engineering critical assessment (ECA) [1] or damage tolerance, and is complementary to other methods of weld quality assurance.

The standard was first introduced in 1980 as a fracture and fatigue assessment procedure, when it was known as PD 6493. [2] Its name was changed to BS 7910 following a revision in 1999. [3] The standard has undergone numerous subsequent revisions, the most recent being in December 2019.

Flaws (such as fabrication cracks, fatigue cracks, creep cracks and corrosion damage) can arise during the manufacture and use of metallic components. For safety-critical items such as aircraft, pipelines and pressure vessels, the failure of a single component due to the presence of a flaw can threaten human life, as well as having severe economic and environmental consequences. Other flaws may be harmless, as they will not lead to failure during the lifetime of the component. Replacement or repair of such flaws is economically wasteful. A fitness-for-service procedure such as BS 7910 allows flaws to be evaluated consistently and objectively, using fracture mechanics principles.

Related Research Articles

Nondestructive testing Evaluating the properties of a material, component, or system without causing damage

Nondestructive testing (NDT) is any of a wide group of analysis techniques used in science and technology industry to evaluate the properties of a material, component or system without causing damage. The terms nondestructive examination (NDE), nondestructive inspection (NDI), and nondestructive evaluation (NDE) are also commonly used to describe this technology. Because NDT does not permanently alter the article being inspected, it is a highly valuable technique that can save both money and time in product evaluation, troubleshooting, and research. The six most frequently used NDT methods are eddy-current, magnetic-particle, liquid penetrant, radiographic, ultrasonic, and visual testing. NDT is commonly used in forensic engineering, mechanical engineering, petroleum engineering, electrical engineering, civil engineering, systems engineering, aeronautical engineering, medicine, and art. Innovations in the field of nondestructive testing have had a profound impact on medical imaging, including on echocardiography, medical ultrasonography, and digital radiography.

Fatigue (material) The initiation and propagation of cracks in a material due to cyclic loading

In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of the fracture surface. The crack will continue to grow until it reaches a critical size, which occurs when the stress intensity factor of the crack exceeds the fracture toughness of the material, producing rapid propagation and typically complete fracture of the structure.

Fracture mechanics Field of mechanics concerned with the study of the propagation of cracks in materials

Fracture mechanics is the field of mechanics concerned with the study of the propagation of cracks in materials. It uses methods of analytical solid mechanics to calculate the driving force on a crack and those of experimental solid mechanics to characterize the material's resistance to fracture.

Damage tolerance is a property of a structure relating to its ability to sustain defects safely until repair can be effected. The approach to engineering design to account for damage tolerance is based on the assumption that flaws can exist in any structure and such flaws propagate with usage. This approach is commonly used in aerospace engineering, mechanical engineering, and civil engineering to manage the extension of cracks in structure through the application of the principles of fracture mechanics. In engineering, a structure is considered to be damage tolerant if a maintenance program has been implemented that will result in the detection and repair of accidental damage, corrosion and fatigue cracking before such damage reduces the residual strength of the structure below an acceptable limit.

Hydrogen embrittlement Embrittlement of a metal exposed to hydrogen

Hydrogen embrittlement (HE) also known as hydrogen assisted cracking or hydrogen-induced cracking, describes the embrittlement of a metal by diffusible hydrogen. The essential facts about the nature of the hydrogen embrittlement of steels have now been known for 140 years. It is diffusible atomic hydrogen that is harmful to the toughness of iron and steel. It is a low temperature effect: most metals are relatively immune to hydrogen embrittlement above approximately 150°C.

Failure causes are defects in design, process, quality, or part application, which are the underlying cause of a failure or which initiate a process which leads to failure. Where failure depends on the user of the product or process, then human error must be considered.

Fracture toughness

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics.

Forensic materials engineering

Forensic materials engineering, a branch of forensic engineering, focuses on the material evidence from crime or accident scenes, seeking defects in those materials which might explain why an accident occurred, or the source of a specific material to identify a criminal. Many analytical methods used for material identification may be used in investigations, the exact set being determined by the nature of the material in question, be it metal, glass, ceramic, polymer or composite. An important aspect is the analysis of trace evidence such as skid marks on exposed surfaces, where contact between dissimilar materials leaves material traces of one left on the other. Provided the traces can be analysed successfully, then an accident or crime can often be reconstructed. Another aim will be to determine the cause of a broken component using the technique of fractography.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

Structural fracture mechanics Field of structural engineering concerned with load-carrying structures with one or more failed or damaged components

Structural fracture mechanics is the field of structural engineering concerned with the study of load-carrying structures that includes one or several failed or damaged components. It uses methods of analytical solid mechanics, structural engineering, safety engineering, probability theory, and catastrophe theory to calculate the load and stress in the structural components and analyze the safety of a damaged structure.

James C. Newman is an American engineer and materials scientist known for his work on fracture and fatigue for aerospace vehicles. NASA has listed him as a "Superstar of Modern Aeronautics".

Structural integrity and failure Ability of a structure to support a designed structural load without breaking

Structural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load without breaking and includes the study of past structural failures in order to prevent failures in future designs.

Polymer fracture is the study of the fracture surface of an already failed material to determine the method of crack formation and extension in polymers both fiber reinforced and otherwise. Failure in polymer components can occur at relatively low stress levels, far below the tensile strength because of four major reasons: long term stress or creep rupture, cyclic stresses or fatigue, the presence of structural flaws and stress-cracking agents. Formations of submicroscopic cracks in polymers under load have been studied by x ray scattering techniques and the main regularities of crack formation under different loading conditions have been analyzed. The low strength of polymers compared to theoretically predicted values are mainly due to the many microscopic imperfections found in the material. These defects namely dislocations, crystalline boundaries, amorphous interlayers and block structure can all lead to the non-uniform distribution of mechanical stress.

Lumped damage mechanics or LDM is a branch of structural mechanics that is concerned with the analysis of frame structures. It is based on continuum damage mechanics and fracture mechanics. It combines the ideas of these theories with the concept of plastic hinge LDM can be defined as the fracture mechanics of complex structural systems. In the models of LDM, cracking or local buckling as well as plasticity are lumped at the inelastic hinges. As in continuum damage mechanics, LDM uses state variables to represent the effects of damage on the remaining stiffness and strength of the frame structure. In reinforced concrete structures, the damage state variable quantifies the crack density in the plastic hinge zone; in unreinforced concrete components and steel beams, it is a dimensionless measure of the crack surface; in tubular steel elements, the damage variable measures the degree of local buckling The LDM evolution laws can be derived from continuum damage mechanics or fracture mechanics. In the latter case, concepts such as the energy release rate or the stress intensity factor of a plastic hinge are introduced. LDM allows for the numerical simulation of the collapse of complex structures with a fraction of the computational cost and human effort of its continuum mechanics counterparts. LDM is also a regularization procedure that eliminates the mesh-dependence phenomenon that is observed in structural analysis with local damage models. In addition, LDM method has been implemented in the finite element analysis of crack propagation of steel beam-to-column connections subjected to ultra-low cycle fatigue.

In mechanical engineering and materials science, a notch refers to a deliberately introduced v-shaped, u-shaped or circular defect in a planar material. In structural components, a notch causes a stress concentration which can result in the initiation and growth of fatigue cracks. Notches are used in materials characterization to determine fracture mechanics related properties such as fracture toughness and rates of fatigue crack growth.

Post weld heat treatment (PWHT) is a controlled process in which a material that has been welded is reheated to a temperature below its lower critical transformation temperature, and then it is held at that temperature for a specified amount of time. It is often referred to as being any heat treatment performed after welding; however, within the oil, gas, petrochemical and nuclear industries, it has a specific meaning. Industry codes, such as the ASME Pressure Vessel and Piping Codes, often require mandatory performance of PWHT on certain materials to ensure a safe design with optimal mechanical and metallurgical properties.

Engineering Critical Assessment (ECA) is a procedure by which the safety of a welded structure with defects or flaws can be determined. ECAs utilize the material properties and expected stress history to determine a flaw acceptance criteria which will ensure that welds will not fail during the construction or service life of the welded structure. The assessment can be used before the structure is in use, or during in-service inspection, to determine whether a given weld is in need of repair. ECAs are used throughout the energy, manufacturing, and infrastructure industries. ECAs are based heavily upon fracture mechanics principles, and reflect an improvement over traditional methods of weld quality assurance, which can be arbitrary or overly conservative.

Crack growth equation

A crack growth equation is used for calculating the size of a fatigue crack growing from cyclic loads. The growth of fatigue cracks can result in catastrophic failure, particularly in the case of aircraft. A crack growth equation can be used to ensure safety, both in the design phase and during operation, by predicting the size of cracks. In critical structure, loads can be recorded and used to predict the size of cracks to ensure maintenance or retirement occurs prior to any of the cracks failing.

Fatigue testing

Fatigue testing is a specialised form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. These tests are used either to generate fatigue life and crack growth data, identify critical locations or demonstrate the safety of a structure that may be susceptible to fatigue. Fatigue tests are used on a range components from coupons through to full size test articles such as automobiles and aircraft.

References

  1. "BS 7910:2019 on British Standards Institute website". bsigroup.com. Retrieved 2020-01-23.
  2. "BS 7910: History and future developments". twi-global.com. Retrieved 2014-09-11.
  3. "PD 6493 becomes BS 7910; what's new in fracture and fatigue assessment?". twi-global.com. Retrieved 2014-09-11.