![]() | This article may be too technical for most readers to understand.(April 2022) |
The balance of angular momentum or Euler's second law in classical mechanics is a law of physics, stating that to alter the angular momentum of a body a torque must be applied to it.
An example of use is the playground merry-go-round in the picture. To put it in rotation it must be pushed. Technically one summons a torque that feeds angular momentum to the merry-go-round. The torque of frictional forces in the bearing and drag, however, make a resistive torque that will gradually lessen the angular momentum and eventually stop rotation.
The mathematical formulation states that the rate of change of angular momentum about a point , is equal to the sum of the external torques acting on that body about that point:
The point is a fixed point in an inertial system or the center of mass of the body. In the special case, when external torques vanish, it shows that the angular momentum is preserved. The d'Alembert force counteracting the change of angular momentum shows as a gyroscopic effect.
From the balance of angular momentum follows the equality of corresponding shear stresses or the symmetry of the Cauchy stress tensor. The same follows from the Boltzmann Axiom, according to which internal forces in a continuum are torque-free. [1] Thus the balance of angular momentum, the symmetry of the Cauchy stress tensor, and the Boltzmann Axiom in continuum mechanics are related terms.
Especially in the theory of the spinning top the balance of angular momentum plays a crucial part. In continuum mechanics it serves to exactly determine the skew-symmetric part of the stress tensor. [2]
The balance of angular momentum is, besides the Newtonian laws, a fundamental and independent principle and was introduced first by Swiss mathematician and physicist Leonhard Euler in 1775. [2]
Swiss mathematician Jakob I Bernoulli applied the balance of angular momentum in 1703 – without explicitly formulating it – to find the center of oscillation of a pendulum, which he had already done in a first, somewhat incorrect manner in 1686. The balance of angular momentum thus preceded Newton's laws, which were first published in 1687. [2]
In 1744, Euler was the first to use the principles of momentum and of angular momentum to state the equations of motion of a system. In 1750, in his treatise "Discovery of a new principle of mechanics" [3] he published the Euler's equations of rigid body dynamics, which today are derived from the balance of angular momentum, which Euler, however, could deduce for the rigid body from Newton's second law. After studies on plane elastic continua, which are indispensable to the balance of the torques, Euler raised the balance of angular momentum to an independent principle for calculation of the movement of bodies in 1775. [2]
In 1822, French mathematician Augustin-Louis Cauchy introduced the stress tensor whose symmetry in combination with the balance of linear momentum made sure the fulfillment of the balance of angular momentum in the general case of the deformable body. The interpretation of the balance of angular momentum was first noted by M. P. Saint-Guilhem in 1851. [4] [5]
Kinetics deals with states that are not in mechanical equilibrium. According to Newton's second law, an external force leads to a change in velocity (acceleration) of a body. Analogously an external torque means a change in angular velocity resulting in an angular acceleration. The inertia relating to rotation depends not only on the mass of a body but also on its spatial distribution. With a rigid body this is expressed by the moment of inertia. With a rotation around a fixed axis, the torque is proportional to the angular acceleration with the moment of inertia as proportionality factor. Here the moment of inertia is not only dependent on the position of the axis of rotation (see Steiner Theorem) but also on its direction. Should the above law be formulated more generally for any axis of rotation then the inertia tensor must be used.
With the two-dimensional special case, a torque only results in an acceleration or slowing down of a rotation. With the general three-dimensional case, however, it can also alter the direction of the axis (precession).
In 1905, Austrian physicist Ludwig Boltzmann pointed out that with reduction of a body into infinitesimally smaller volume elements, the inner reactions have to meet all static conditions for mechanical equilibrium. Cauchy's stress theorem handles the equilibrium in terms of force. For the analogous statement in terms of torque, German mathematician Georg Hamel coined the name Boltzmann Axiom. [6] [7]
This axiom is equivalent to the symmetry of the Cauchy stress tensor. For the resultants of the stresses do not exert a torque on the volume element, the resultant force must lead through the center of the volume element. The line of action of the inertia forces and the normal stress resultants σxx·dy and σyy·dx lead through the center of the volume element. In order that the shear stress resultants τxy·dy and τyx·dx lead through the center of the volume element
must hold. This is actually the statement of the equality of corresponding shear stresses in the xy plane.
In addition to the torque-free classical continuum with a symmetric stress tensor, cosserat continua (polar continua) that are not torque-free have also been defined. [8] One application of such a continuum is the theory of shells. Cosserat continua are not only capable to transport a momentum flux but also an angular momentum flux. Therefore, there also may be sources of momentum and angular momentum inside the body. Here the Boltzmann Axiom does not apply and the stress tensor may be skew-symmetric. [9]
If these fluxes are treated as usual in continuum mechanics, field equations arise in which the skew-symmetric part of the stress tensor has no energetic significance. The balance of angular momentum becomes independent of the balance of energy and is used to determine the skew-symmetric part of the stress tensor. American mathematician Clifford Truesdell saw in this the "true basic sense of Euler's second law". [2]
The area rule is a corollary of the angular momentum law in the form: The resulting moment is equal to the product of twice the mass and the time derivative of the areal velocity. [10]
It refers to the ray to a point mass with mass m. This has the angular momentum with the velocity and the momentum
In the infinitesimal time dt the trajectory sweeps over a triangle whose content is , see image, areal velocity and cross product "×". This is how it turns out:
With Euler's second law this becomes:
The special case of plane, moment-free central force motion is treated by Kepler's second law, also known as the area rule.
Angular momentum is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved. Bicycles and motorcycles, flying discs, rifled bullets, and gyroscopes owe their useful properties to conservation of angular momentum. Conservation of angular momentum is also why hurricanes form spirals and neutron stars have high rotational rates. In general, conservation limits the possible motion of a system, but it does not uniquely determine it.
Continuum mechanics is a branch of mechanics that deals with the deformation of and transmission of forces through materials modeled as a continuous medium rather than as discrete particles.
Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.
Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment.
In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force. The symbol for torque is typically , the lowercase Greek letter tau. When being referred to as moment of force, it is commonly denoted by M. Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point; for example, driving a screw uses torque, which is applied by the screwdriver rotating around its axis. A force of three newtons applied two metres from the fulcrum, for example, exerts the same torque as a force of one newton applied six metres from the fulcrum.
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time. More specifically, the equations of motion describe the behavior of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system. The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
In physics, a rigid body, also known as a rigid object, is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Dynamical simulation, in computational physics, is the simulation of systems of objects that are free to move, usually in three dimensions according to Newton's laws of dynamics, or approximations thereof. Dynamical simulation is used in computer animation to assist animators to produce realistic motion, in industrial design, and in video games. Body movement is calculated using time integration methods.
In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. Their general vector form is
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
In classical mechanics, a central force on an object is a force that is directed towards or away from a point called center of force. where is the force, F is a vector valued force function, F is a scalar valued force function, r is the position vector, ||r|| is its length, and is the corresponding unit vector.
In mathematics, mathematical physics, and theoretical physics, the spin tensor is a quantity used to describe the rotational motion of particles in spacetime. The spin tensor has application in general relativity and special relativity, as well as quantum mechanics, relativistic quantum mechanics, and quantum field theory.
Rotation around a fixed axis or axial rotation is a special case of rotational motion around an axis of rotation fixed, stationary, or static in three-dimensional space. This type of motion excludes the possibility of the instantaneous axis of rotation changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will result.
In continuum mechanics, the Cauchy stress tensor, also called true stress tensor or simply stress tensor, completely defines the state of stress at a point inside a material in the deformed state, placement, or configuration. The second order tensor consists of nine components and relates a unit-length direction vector e to the traction vectorT(e) across an imaginary surface perpendicular to e:
In classical mechanics, Poinsot's construction is a geometrical method for visualizing the torque-free motion of a rotating rigid body, that is, the motion of a rigid body on which no external forces are acting. This motion has four constants: the kinetic energy of the body and the three components of the angular momentum, expressed with respect to an inertial laboratory frame. The angular velocity vector of the rigid rotor is not constant, but satisfies Euler's equations. The conservation of kinetic energy and angular momentum provide two constraints on the motion of .
The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.
In classical mechanics, Euler's laws of motion are equations of motion which extend Newton's laws of motion for point particle to rigid body motion. They were formulated by Leonhard Euler about 50 years after Isaac Newton formulated his laws.
The tennis racket theorem or intermediate axis theorem, is a kinetic phenomenon of classical mechanics which describes the movement of a rigid body with three distinct principal moments of inertia. It has also dubbed the Dzhanibekov effect, after Soviet cosmonaut Vladimir Dzhanibekov, who noticed one of the theorem's logical consequences whilst in space in 1985. The effect was known for at least 150 years prior, having been described by Louis Poinsot in 1834 and included in standard physics textbooks such as Classical Mechanics by Herbert Goldstein throughout the 20th century.