A bank engine (United Kingdom/Australia) (colloquially a banker), banking engine, helper engine or pusher engine (North America) is a railway locomotive that temporarily assists a train that requires additional power or traction to climb a gradient (or bank). Helpers/bankers are most commonly found in mountain divisions (called "helper districts" in the United States), where the ruling grade may demand the use of substantially greater motive power than that required for other grades within the division.
Helpers/bankers were most widely used during the age of steam, especially in the American West, where significant grades are common and trains are long. The development of diesel-electric or electric locomotives has eliminated the everyday need for bankers/helpers in all but a few locations. With the advent of dynamic brakes on electric or diesel-electric locomotives, helpers/bankers can also be used to provide more braking force on long downhill gradients.
Bankers or helpers were historically positioned at the rear of the train, in which case they also protected against wagons or coaches breaking away from the train and running back downhill. Also, in a pusher role, it was possible for the helper/banker to easily separate once the train had crested the grade. Once separated, the banker would return to a siding or stub so as to clear the mainline and get ready for the next train. A common practice with knuckle couplers was to remove the knuckle from the front coupler. The locomotive would be brought up behind the last car of the train while the train was moving slowly. The air brake hose would not be coupled. When the train no longer required assistance, the helper/pusher would slow, then reverse and coast back down the grade to its siding at the bottom of the grade. This practice was outlawed in North America after the end of the steam era.
Special heavily constructed cabooses were sometimes used in helper areas. Ordinary cabooses were built as lightly as practical and might be crushed by the helper/pusher's force, which could be as much as 90 tons. The heavy cabooses allowed crews to avoid the time-consuming procedure of splitting the train just ahead of the caboose. [1]
Pushers/helpers were commonly designed to provide extreme power for very short runs; as a result they could not push at full power for very far before steam pressure dropped. If it could push enough to get the train to the top of the grade, then it could build up pressure while coasting back down and while waiting for the next train to come along. This practice was common in Europe.
Since it was not possible to remotely control a steam locomotive, each helper had to have a full crew on board. Careful coordination was required between engine crews to assure that all locomotives were operated in a consistent manner. Standard whistle signals were employed to tell the helper crew when to apply power, drift or brake. A misunderstanding of signals by a pusher locomotive crew could result in a major wreck if the lead locomotive applied brakes while the bank engine was still applying power. The usual result was that the train would experience a violent run-in (an abrupt bunching of train slack), resulting in the derailment of part or all of the train.
The town of Helper, Utah, was named after these engines. It was where helper engines were kept to assist on the climb to Soldier Summit.
Nowadays helpers/bankers are often controlled by coded radio signals from the locomotive at the head end of the train, allowing one engineer (driver) to simultaneously control the helper(s) and the train being helped. If radio operation is not possible, electrical control might be used, by way of cables running the length of the train (especially in case of passenger trains). Alternatively, radio communication with the lead engine's driver facilitates manual operation, which is still the norm for bank engines at the end of freight trains in Europe.
In the UK, an engine that was temporarily attached to the front of a train to assist with the ascent of an incline was called a pilot locomotive. This differentiated it from the train engine(s) that powered the train to its destination. A train with one or more locomotives attached to the front may be described as a "double header", "triple header", etc., depending on the number of helpers/bankers even when this lash-up of power was used for the entire run. These terms gradually fell out of general usage as diesel locomotives replaced steam power, and are not used for the common assemblage of several power units.
In countries where buffers-and-chain couplers are used, bank engines often cannot be added to the front of the train due to the limited strength of the couplers; In the case of standard UIC couplers and a maximum grade of 28‰ (which is common, e.g., for lines through the Alps), the limit is a train weight of 1400 tons; [2] if a train is heavier, bank engines have to be added in the middle or to the end of the train in order not to exceed the maximum load for any coupler.
Adding locomotives in the middle of the train has the distinct advantage of applying the helper power to only part of the train, thus limiting the maximum drawbar pull applied to the first car of the train to a safe level. The narrow gauge portions of the Denver and Rio Grande Western Railroad, in particular, used "swing helpers", which meant the helper locomotives were placed mid-train at a point where they were pushing and pulling an approximately equal amount of tonnage, said location being referred to as the train's "swing point". This was also done to balance out the "slack" in the train between the locomotives, the swing helpers, and the end train helpers just in front of the caboose. However, this arrangement requires splitting the train in order to add or remove the helper engine(s), which can be a time-consuming maneuver. However, on some American railroads it was necessary to an extent, because operating rules required end of train helpers to be added at the end of the train, but in front of the caboose. This was done for the safety of the train crew riding inside the caboose.
To be able to add and remove helper locomotives quickly, which is especially important in Europe due to the high traffic density, they are usually added to the end of the train. Normally, they are coupled and the air hoses are connected, which is necessary for the air brake to work correctly e.g., in emergency situations, but in special cases trains are banked with uncoupled locomotives, which can be added or removed "in-flight." In the UK it was a usual practice for banking locomotives to follow and buffer-up to a slow-moving assisted freight train without coupling (as demonstrated in archive films of banking on the Lickey Incline) before applying more power, thus precluding the need for a standing start. Following an accident in 1969 [3] this practice was discontinued. This procedure is not performed in North America, as it would violate Canadian and United States safety regulations.
A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight trains.
A multiple-unit train or simply multiple unit (MU) is a self-propelled train composed of one or more carriages joined, which when coupled to another multiple unit can be controlled by a single driver, with multiple-unit train control.
A steam locomotive is a locomotive that provides the force to move itself and other vehicles by means of the expansion of steam. It is fuelled by burning combustible material to heat water in the locomotive's boiler to the point where it becomes gaseous and its volume increases 1,700 times. Functionally, it is a steam engine on wheels.
The Snowdon Mountain Railway is a narrow gauge rack-and-pinion mountain railway in Gwynedd, north-west Wales. It is a tourist railway that travels for 4.7 miles (7.6 km) from Llanberis to the summit of Snowdon, the highest peak in Wales.
The vacuum brake is a braking system employed on trains and introduced in the mid-1860s. A variant, the automatic vacuum brake system, became almost universal in British train equipment and in countries influenced by British practice. Vacuum brakes also enjoyed a brief period of adoption in the United States, primarily on narrow-gauge railroads. Their limitations caused them to be progressively superseded by compressed air systems starting in the United Kingdom from the 1970s onward. The vacuum brake system is now obsolete; it is not in large-scale usage anywhere in the world, other than in South Africa, largely supplanted by air brakes.
Brake van and guard's van are terms used mainly in the UK, Ireland, Australia and India for a railway vehicle equipped with a hand brake which can be applied by the guard. The equivalent North American term is caboose, but a British brake van and a caboose are very different in appearance, because the former usually has only four wheels, while the latter usually has bogies. German railways employed brakeman's cabins combined into other cars.
A tender or coal-car is a special rail vehicle hauled by a steam locomotive containing its fuel and water. Steam locomotives consume large quantities of water compared to the quantity of fuel, so their tenders are necessary to keep them running over long distances. A locomotive that pulls a tender is called a tender locomotive. Locomotives that do not have tenders and carry all their fuel and water on board the locomotive itself are called tank locomotives or tank engines.
A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel-electric locomotives and diesel-hydraulic.
Rail transport terms are a form of technical terminology applied to railways. Although many terms are uniform across different nations and companies, they are by no means universal, with differences often originating from parallel development of rail transport systems in different parts of the world, and in the national origins of the engineers and managers who built the inaugural rail infrastructure. An example is the term railroad, used in North America, and railway, generally used in English-speaking countries outside North America and by the International Union of Railways. In English-speaking countries outside the United Kingdom, a mixture of US and UK terms may exist.
The end of train device (ETD), sometimes referred to as an EOT, flashing rear-end device (FRED) or sense and braking unit (SBU) is an electronic device mounted on the end of freight trains in replacement of a caboose. They are divided into three categories: "dumb" units, which only provide a visible indication of the rear of the train with a flashing red taillight; "average intelligence" units with a brake pipe pressure gauge; and "smart" units, which send back data to the crew in the locomotive via radio-based telemetry. They originated in North America, and are also used elsewhere in the world, where they may include complete End of Train Air System (ETAS) or Sense and Brake Unit (SBU) devices.
In 1919, the Midland Railway built a single 0-10-0 steam locomotive, No 2290. It was designed by James Anderson for banking duties on the Lickey Incline in Worcestershire, England. It became known as "Big Bertha" or "Big Emma" by railwaymen and railway enthusiasts.
The EMD FT is a 1,350-horsepower (1,010 kW) diesel-electric locomotive that was produced between March 1939 and November 1945, by General Motors' Electro-Motive Corporation (EMC), later known as GM Electro-Motive Division (EMD). The "F" stood for Fourteen Hundred (1400) horsepower and the "T" for Twin, as it came standard in a two-unit set. The design was developed from the TA model built for the C,RI&P in 1937, and was similar in cylinder count, axle count, length, and layout. All told 555 cab-equipped ”A” units were built, along with 541 cabless booster or ”B” units, for a grand total of 1,096 units. The locomotives were all sold to customers in the United States. It was the first model in EMD's very successful F-unit series of cab unit freight diesels and was the locomotive that convinced many U.S. railroads that the diesel-electric freight locomotive was the future. Many rail historians consider the FT one of the most important locomotive models of all time.
On February 8, 1986, twenty-three people were killed in a collision between a Canadian National Railway freight train and a Via Rail passenger train called the Super Continental, including the engine crews of both trains. It was the deadliest rail disaster in Canada since the Dugald accident of 1947, which had thirty-one fatalities, and was not surpassed until the Lac-Mégantic rail disaster in 2013, which resulted in 47 deaths.
The British Rail Class 35 is a class of mixed-traffic B-B diesel locomotive with hydraulic transmission. Because of their Mekydro-design hydraulic transmission units, the locomotives became known as the Hymeks. They were numbered D7000-D7100.
A brakeman is a rail transport worker whose original job was to assist the braking of a train by applying brakes on individual wagons. The advent of through brakes, brakes on every wagon which could be controlled by the driver, made this role redundant, although the name lives on, for example, in the United States where brakemen carry out a variety of functions both on the track and within trains.
This article contains a list of jargon used to varying degrees by railfans, trainspotters, and railway employees in the United Kingdom, including nicknames for various locomotives and multiple units. Although not exhaustive, many of the entries in this list appear from time to time in specialist, rail-related publications. There may be significant regional variation in usage.
This article contains a list of terms, jargon, and slang used to varying degrees by railfans and railroad employees in the United States and Canada. Although not exhaustive, many of the entries in this list appear from time to time in specialist, rail-related publications. Inclusion of a term in this list does not necessarily imply its universal adoption by all railfans and railroad employees, and there may be significant regional variation in usage.
The long hood of a hood unit-style diesel locomotive is, as the name implies, the longer of the two hoods on a locomotive, particularly American-type freight locomotives.
The Buffalo, Rochester, and Pittsburgh Railway was one of the more than ten thousand railroad companies founded in North America. It lasted much longer than most, serving communities from the shore of Lake Ontario to the center of western Pennsylvania.
In railroad terminology, double heading indicates the use of two locomotives at the front of a train, each operated individually by its own crew. The practice of triple-heading involves the use of three locomotives. The practice of multi-heading involves the use of multiple locomotives and so on.