Beet necrotic yellow vein virus

Last updated
Beet necrotic yellow vein virus
Beet Necrotic Yellow Vein Virus - Benyvirus BNYVV - 5357098-1.png
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Alsuviricetes
Order: Hepelivirales
Family: Benyviridae
Genus: Benyvirus
Species:
Beet necrotic yellow vein virus
Synonyms

(possibly) Beet yellow vein virus

Beet necrotic yellow vein virus (BNYVV) is a plant virus, transmitted by the plasmodiophorid [1] Polymyxa betae. The BNYVV is a member of the genus Benyvirus [2] and is responsible for rhizomania, a disease of sugar beet (Rhizo: root; Mania: madness) that causes proliferation of thin rootlets, and leads to a smaller tap root with reduced sugar content. Infected plants are less able to take up water, and wilting can be observed during the warm period of the year. If the infection spreads to the whole plant, vein yellowing, necrosis and yellow spots appear on the leaves, giving the virus its name.

Contents

Hosts and symptoms

In this sliced open root, discoloration and the swelling of the crown due to rhizomania can be seen. The swelling of the crown is often referred to as "wine glass swelling" due to the shape resembling a wine glass. Beet necrotic yellow vein virus (BNYVV).jpg
In this sliced open root, discoloration and the swelling of the crown due to rhizomania can be seen. The swelling of the crown is often referred to as "wine glass swelling" due to the shape resembling a wine glass.

BNYVV Infects all of the following species: Beta vulgaris (beetroot), Beta vulgaris var. cicla, Beta vulgaris var. rubra, Beta vulgaris var. saccharifera (sugarbeet), Chamomilla recutita (common chamomile), Chenopodium (Goosefoot), Chenopodium quinoa (quinoa), Cichorium intybus (chicory), Cirsium arvense (creeping thistle), Convolvulus arvensis (bindweed), Datura stramonium (jimsonweed), Descurainia sophia (flixweed), Heliotropium europaeum (common heliotrope), Nicotiana tabacum (tobacco), Plantago major (broad-leaved plantain), Raphanus raphanistrum (wild radish), Spinacia oleracea (spinach), Tetragonia tetragonioides (New Zealand spinach), Tribulus terrestris (puncture vine), Veronica hederifolia and Xanthium strumarium (common cocklebur). The plants that suffer infections from BNYVV in the most abundance are all the subspecies of Beta Vulgaris, specifically Beta vulgaris var. saccharifera (sugar beet), and Spinacia oleracea (spinach). [3]

In Beta vulgaria var. saccharifera (sugar beet), symptoms are most often local in the roots and leaves, but can be found systemically on rare occasions. Symptoms are seen differently depending on when the infection occurs in the plant. In early life stages and early growing season, a diseases called rhizomania is caused as a result of the virus. Rhizomania is the growth of fine, hairy secondary roots which are dead and thus prevent the proper uptake of water. [4] Because of rhizomania, the sugar beet is subject to severe infection where the entire plant is stunted, leaves are wilted, and death can occur. [3] Due to the severity of an early onset infection, the most common symptom of BNYVV, yellow mosaic on the leaves, is rarely seen as the plant often dies before the virus can spread. For midseason and less severe infections, rhizomania results in the storage root rotting and constricting, causing the root to swell near the crown. [4] In this case, rhizomania doesn't cause the plant to die which allows the virus is able to make its way to the leaves resulting in yellow-pale discoloration, proliferation, and upright growth. [3] In late season infections, both roots and leaves appear asymptomatic. [3] [4]

Spinacia oleracea (spinach) can also be infected by the same strand of BNYVV. For this plant, complete infection of the plant can occur in as little as four weeks causing yellow-green vein clearing on young leaves, stiff and/or crinkled leaves, necrosis, stunting, wilting, and possibly death. Unlike the sugar beet plant, systemic infection is almost always seen in spinach due to easy transmission through the plants roots. [5]

Environment

BNYVV was first discovered in Japan during the 1950s and in Italy circa 1959. In the following two decades, the virus had spread to central, eastern, and southern Europe. Currently, the virus is found in 22 European countries, six Asian countries, and select states of the U.S.A. (Idaho, Nebraska, New Mexico, Texas, Washington, Wyoming). [6]

Because BNYVV is a virus, it can't move on its own thus making a vector or other modes of transportation a necessity for it to infect multiple hosts. The most common way for the virus to be dispersed is Polymyxa betae , a plasmodiophoromycete fungal-like vector. [6] The important aspect of P. betae is that it doesn't infect the plant itself, rather it functions as a storage unit for the BNYVV virus. In P. betae, the virus can lay dormant for over ten years making it easily dispersed in areas with much rain and farms with irrigation. [7] Two other main ways that BNYVV is spread are infected plant roots and infected beet stecklings. [6]

Focusing on P. betae, conditions that favor this vector have high correlation with amount of disease seen in plants. In order for P. betae to release the virus, it requires a high soil moisture. [8] This can be a result from excessive rainfall, excessive irrigation, and/or poor drainage systems which all promote severe cases of the disease. Along with soil moisture, soil quality also plays a role in disease severity. Poor soil structure is a major factor in causing severe cases of the BNYVV making crop rotation and tilling a necessity to minimize the chance of a severe outbreak. [8] [9] Temperature wise, P. betae thrives in warmer soil temperatures (around 25 degrees Celsius) which makes the ideal planting time fall in spring or early summer at the latest. [8]

Management

Because BNYVV can't be transmitted via seed or pollen, it uses Polymyxa betae to disperse via its resting spores called cystosori. [8] The cystosori can be found in soil or in dried plant roots where they can remain dormant for more than 10 years making the elimination of this virus very difficult. Modeling the spread of BNYV allows roguing of infected plants on the basis of surveillance. Stacy et al 2004 provides a model of BNYV in the United Kingdom and management strategies to be implemented. [10]

The most important form of management for BNYVV is water management. Because P. betae thrives in moist conditions, heavy rain and irrigation creating high soil moisture cause the most severe cases of disease inoculation. [8] This makes water management crucial at the beginning of the growing season to the point where cultivators are encouraged to restrain from any type of irrigation for up to six weeks after first germination of the plant. [9] Irrigation can also create runoff which can transfer infectious P. Betae to other healthy fields that will result in destruction of that field as well which makes water runoff management just as important as irrigation management.[ citation needed ]

Non-resistant beets (left) vs resistant beets (right) exposed to the BNYV virus Beet Necrotic Yellow Vein Virus - Benyvirus BNYVV - 5357098-1.png
Non-resistant beets (left) vs resistant beets (right) exposed to the BNYV virus

Another form of dispersal is a result of human interactions. The resting spores of P. Betae located in the soil can be picked up by farm contaminated machinery/tools, human movement, and livestock movement making the identification of infected fields very important. This infected soil can also be found in manure which can infect fields by using it as a fertilizer. [9] Currently, treating infected soil is not only very difficult, but also very expensive. Some chemical use and fumigation has been found to only be somewhat effective, but the cost of either grossly outweighs the potential benefit. [8] This makes avoiding cross contamination crucial for disease management. Infected fields should be isolated as much as possible due to the spread of the pathogen being possible via only small amounts of soil. Due to P. Betae being very difficult to kill, if avoiding contaminated soil is not possible than the use of disposable or rubber footwear is advised in order to ensure proper cleaning. Cleaning of footwear and machinery should be done at the infected site due to the little amount of pathogen it takes to start a widespread infection. [9]

Due to the difficulty of managing P. Betae, the most promising form of management is the pursuit of resistant crops. [8] [9] There has been a focus on two genes in particular, Rz1 from B. vulgaris spp. vulgaris and Rz2 from B. vulgaris spp. maritima. These genes focus on restricting the translocation and multiplication of the virus in the roots, but don't prevent infection all together. [8] Resistance is also helpful in delaying and limiting the buildup of initial inoculum in the soil. [8]

Related Research Articles

<span class="mw-page-title-main">Sugar beet</span> Plant grown commercially for sugar production

A sugar beet is a plant whose root contains a high concentration of sucrose and which is grown commercially for sugar production. In plant breeding, it is known as the Altissima cultivar group of the common beet. Together with other beet cultivars, such as beetroot and chard, it belongs to the subspecies Beta vulgaris subsp. vulgaris. Its closest wild relative is the sea beet.

<i>Beta vulgaris</i> Species of flowering plant

Beta vulgaris (beet) is a species of flowering plant in the subfamily Betoideae of the family Amaranthaceae. Economically, it is the most important crop of the large order Caryophyllales. It has several cultivar groups: the sugar beet, of greatest importance to produce table sugar; the root vegetable known as the beetroot or garden beet; the leaf vegetable known as chard or spinach beet or silverbeet; and mangelwurzel, which is a fodder crop. Three subspecies are typically recognised. All cultivars, despite their quite different morphologies, fall into the subspecies Beta vulgaris subsp. vulgaris. The wild ancestor of the cultivated beets is the sea beet.

<span class="mw-page-title-main">Chard</span> Green leafy vegetable

Chard or Swiss chard is a green leafy vegetable. In the cultivars of the Flavescens Group, the leaf stalks are large and often prepared separately from the leaf blade; the Cicla Group is the leafy spinach beet. The leaf blade can be green or reddish; the leaf stalks are usually white, yellow or red.

<span class="mw-page-title-main">Leaf vegetable</span> Plant leaves eaten as a vegetable

Leaf vegetables, also called leafy greens, pot herbs, vegetable greens, or simply greens, are plant leaves eaten as a vegetable, sometimes accompanied by tender petioles and shoots. Leaf vegetables eaten raw in a salad can be called salad greens.

<span class="mw-page-title-main">Leaf spot</span> Type of area of a leaf

A leaf spot is a limited, discoloured, diseased area of a leaf that is caused by fungal, bacterial or viral plant diseases, or by injuries from nematodes, insects, environmental factors, toxicity or herbicides. These discoloured spots or lesions often have a centre of necrosis. Symptoms can overlap across causal agents, however differing signs and symptoms of certain pathogens can lead to the diagnosis of the type of leaf spot disease. Prolonged wet and humid conditions promote leaf spot disease and most pathogens are spread by wind, splashing rain or irrigation that carry the disease to other leaves.

<i>Lettuce mosaic virus</i> Species of virus

Lettuce mosaic virus (LMV) is a typical potyvirus, which causes one of the major virus diseases of lettuce crops worldwide.

<span class="mw-page-title-main">Curly top</span> Viral disease that affects many crops

Curly top is a viral disease that affects many crops. This disease causes plants to become smaller in size, have shriveled petals and leaves, and are twisted and pulled out of shape. They are often caused by curtoviruses, members of the virus family Geminiviridae. This disease is important in western United States, such as California, Utah, Washington, and Idaho.

Albugo occidentalis, the causal agent of spinach white rust, is an oomycete plant pathogen, although some discussions still treat it as a fungal organism. Albugo occidentalis is one of the most important spinach diseases in North America, found throughout the United States east of the rocky mountains.

<i>Cercospora beticola</i> Species of fungus

Cercospora beticola is a fungal plant pathogen which typically infects plants of the genus Beta, within the family of Chenopodiaceae. It is the cause of Cercospora leaf spot disease in sugar beets, spinach and swiss chard. Of these hosts, Cercospora leaf spot is the most economically impactful in sugar beets. Cercospora beticola is a deuteromycete fungus that reproduces using conidia. There is no teleomorph stage. C. beticola is a necrotrophic fungus that uses phytotoxins specifically Cercospora beticola toxin (CBT) to kill infected plants. CBT causes the leaf spot symptom and prevents root formation. Yield losses from Cercospora leaf spot are around 20 percent.

Fusarium oxysporum f.sp. betae is a destructive fungal plant pathogen. It causes Fusarium yellows or fusarium wilt, characterized by yellowing and dwarfing.

<i>Neocamarosporium betae</i> Species of fungus

Neocamarosporium betae is a plant pathogen infecting Beta vulgaris (beet) and causes Phoma leaf spot. It was originally published and described in 1877 as Pleospora betae before being resolved as Neocamarosporium betae(Berl.) Ariyaw. & K.D. Hyde in 2015. It also causes leaf spot on Spinach plants.

<span class="mw-page-title-main">Peronospora farinosa</span> Species of single-celled organism

Peronospora farinosa is a species name that has been widely applied to downy mildew on leaves of wild and cultivated Amaranthaceae: Amaranthus, Atriplex, Bassia, Beta, Chenopodium, Halimione, Salsola, Spinacia, etc. However, the species name has been taxonomically rejected as the original description contained reference to multiple species and could not unequivocally be attributed to a species of Peronospora. In the past, some of the species on important crop plants have been given names as formae speciales, notably f.sp. betae on sugar beet and f.sp. spinaciae on spinach. However, phylogentic reconstructions have revealed that these "forms" of Peronospora on different genera and their subdivisions, are distinct species, most of which already have previously published scientific names. Such host specialization possibly also exists with respect to the various wild amaranthaceous species given as hosts of P. farinosa.

<span class="mw-page-title-main">Barley yellow mosaic virus</span> Species of virus

Barley yellow mosaic virus is plant pathogenic virus that causes the yellow mosaic disease of barley. Its shape is categorized as being flexuous filamentous, with lengths of 275 and 550 nanometers. The virus has a limited host range, and barley appears to be the only known susceptible host. The virus is transmitted via Polymyxa graminis, which is a plasmodiophorid protist, through the resting spores that survive in the soil, and eventually zoospores. Eastern Asia is the most affected region, but the virus can be found worldwide. Current agricultural practices have been ineffective at eliminating the virus, but breeding resistance appears to be the only way to help reduce the disease.

<i>Beet curly top virus</i> Species of virus

Beet curly top virus (BCTV) is a pathogenic plant virus of the family Geminiviridae, containing a single-stranded DNA. The family Geminiviridae consists of nine genera based on their host range, virus genome structure, and type of insect vector. BCTV is a Curtovirus affecting hundreds of plants. The only known vector is the beet leafhopper, which is native to the Western United States.

Beet leaf curl virus (BLCV) is a plant pathogenic virus of the family Rhabdoviridae.

Beet yellows virus (BYV) is a plant pathogenic virus of the family Closteroviridae. Beet yellows virus is transmitted by multiple species of aphid and causes a yellowing disease in Beta vulgaris and Spinacia oleracea.

<i>Benyvirus</i> Genus of viruses

Benyvirus is a genus of viruses, in the family Benyviridae. Plants serve as natural hosts. There are four species in this genus. Diseases associated with this genus include: BNYVV: rhizomania.

<span class="mw-page-title-main">Beet vascular necrosis</span> Bacterial disease in beet plants

Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.

Cocoa necrosis virus (CoNV) is a plant pathogenic virus of the genus nepovirus that infects Theobroma cacao en natura causing cacao necrosis disease. CoNV is considered synonymous with Strain S of cacao swollen shoot virus. Unlike Cacao swollen shoot virus, it is not transmitted by mealybugs nor vectored by aphids, beetles, or leafhoppers that also commonly infest cacao. It is serologically, distantly related to Tomato black ring virus and very distantly related to Grapevine chrome mosaic virus.

<i>Beta macrocarpa</i> Species of plant in the family Amaranthaceae

Beta macrocarpa, the large-fruited beet, is a species of flowering plant in the family Amaranthaceae, native to the Canary Islands and the shores of the Mediterranean. It is widely used to study beet necrotic yellow vein virus in an effort to improve the sugar beet.

References

  1. "Plasmodiophorid Home Page".
  2. Tamada T (1999) Benyviruses. In: Webster R, Granoff A (eds) Encyclopedia of Virology, 2nd edt. Academic Press, New York, N.Y., pp 154–160
  3. 1 2 3 4 "rhizomania (Beet necrotic yellow vein virus)". www.plantwise.org. Retrieved 2017-11-29.
  4. 1 2 3 Gary D. Franc, Eric D. Kerr, William Brown, Jr., Jack H. Riesselman. "Rhizomania of Sugar Beet". Archived from the original on 29 March 2018. Retrieved 13 December 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  5. Mou, B.; Richardson, K.; Benzen, S.; Liu, H.-Y. (2012-04-10). "Effects of Beet necrotic yellow vein virus in Spinach Cultivars". Plant Disease. 96 (5): 618–622. doi:10.1094/PDIS-09-11-0748. ISSN   0191-2917. PMID   30727521.
  6. 1 2 3 CABI and EPPO. "Beet necrotic yellow vein furovirus". EPPO Global Database. Retrieved 29 November 2017.
  7. Friedrich, R.; Kaemmerer, D.; Seigner, L. (2010). "Investigation of the persistence of Beet necrotic yellow vein virus in rootlets of sugar beet during biogas fermentation / Untersuchung der Überdauerung des Rübenwurzelbärtigkeits-Virus in Zuckerrübenwurzeln im Biogasfermenter". Journal of Plant Diseases and Protection. 117 (4): 150–155. doi:10.1007/BF03356352. JSTOR   43229118. S2CID   82474233.
  8. 1 2 3 4 5 6 7 8 9 T. Tamada, Research Institute for Bioresources, Okayama University, Kurashiki, Okayama, 710-0046 JAPAN (April 2002). "Beet necrotic yellow vein virus". Descriptions of Plant Viruses. Retrieved 29 November 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  9. 1 2 3 4 5 Gary D. Franc, Eric D. Kerr, William Brown, Jr., Jack H. Riesselman. Research and Extension Plant Pathologist, University of Wyoming; Extension Plant Pathologist, University of Nebraska; Extension Plant Pathologist, Colorado State University; Extension Plant Pathologist, Montana State University, respectively. (May 1993). "Rhizomania of Sugar Beet". University of Wyoming. Archived from the original on 29 March 2018. Retrieved 29 November 2017.{{cite web}}: CS1 maint: multiple names: authors list (link)
  10. Parnell, Stephen; van den Bosch, Frank; Gottwald, Tim; Gilligan, Christopher A. (2017-08-04). "Surveillance to Inform Control of Emerging Plant Diseases: An Epidemiological Perspective". Annual Review of Phytopathology . Annual Reviews. 55 (1): 591–610. doi:10.1146/annurev-phyto-080516-035334. ISSN   0066-4286. PMID   28637378. S2CID   12143052.