Benthic boundary layer

Last updated

The benthic boundary layer (BBL) is the layer of water directly above the sediment at the bottom of a body of water (river, lake, or sea, etc.). [1] Through specific sedimentation processes, certain organisms are able to live in this deep layer of water. The BBL is generated by the friction of the water moving over the surface of the substrate, which decrease the water current significantly in this layer. [2] The thickness of this zone is determined by many factors, including the Coriolis force. The benthic organisms and processes in this boundary layer echo the water column above them. [2]

Contents

The BBL serves as a transitional zone between the water column and the sediment layer by regulating biogeochemical processes and the flux of nutrients and organic materials. [2] This zone also serves as the main layer of resistance for the shift of mass, heat, and nutrients from the sediment to the water, or vice versa. [1] It is this area of interaction between the two environments that is important in many species' reproductive strategies, particularly larvae dispersal. The benthic boundary layer also contains nutrients important in fisheries, a wide array of microscopic life, a variety of suspended materials, and sharp energy gradients. It is also the sink for many anthropogenic substances released into the environment as the substances commonly sink to the bottom of the water column. [2]

Life in the Deep Sea Benthic Boundary Layer

The benthic boundary layer (BBL) represents a few tens of meters of the water column directly above the sea floor [3] and constitutes an important zone of biological activity in the ocean. [4] It plays a vital role in the cycling of matter, and has been called the “endpoint” for sedimenting material, which fuels high metabolic rates for microbial populations. [5]

Marine snow as it is falling to the ocean floor. Marine snow.jpg
Marine snow as it is falling to the ocean floor.

After passing through the BBL, this degraded material is either returned to the water column or mobilized into the sediment, where it may eventually become immobilized. While the supply of POM (particulate organic matter), or marine snow, is relatively limited and inhibits species abundance, it sustains a complex yet understudied microbial loop that can maintain both meiofaunal and macrofaunal populations. In the microbial loop, non-moving benthic organism living in the benthic boundary layer supply nutrients to the loop by releasing unused particles for use by microbial communities. [2] In a study by Will Ritzrau (1996), it was determined that microbial activities were up to a factor of 7.5 higher in the BBL than in adjacent waters. [6] While this study was completed between 100-400m depth, it could have implications for the deep-BBL.

Organisms that live in the benthic boundary layer are known as being benthopelagic. [7] All organisms living predominantly in the benthic boundary layer must acquire their food from falling particles in the water column. [2] Bacterial growth and consumption of falling organic detritus is hindered by the hydrostatic pressure of water and increase in depth. [8] This allows for changeable and consumable matter to reach the ocean flood and be consumed by benthic organisms. The quality and quantity of nutrients reaching the sea floor play a major role in the development of benthic communities. [2] These organisms ultimately play a vital role in the remineralization of matter and aid in breaking down POM that may eventually become permanent sediment. Excluding hydrothermal vents, much of the deep sea benthos is allochthonous, [9] [3] and the importance of bacteria for substrate conversion is paramount.

Possible amphipod that could live in the BBL. Gammarus roeselii.jpg
Possible amphipod that could live in the BBL.

[10] [11]

Presently, it is known that deep-BBL bacterial populations are able to support protozoan bacterivores like foraminifera and some metazoan zooplankton, [12] which in turn can support larger organisms. [13] Meiofauna and macrofauna found in the deep-BBL include: copepods, annelids, nematodes, bivalves, ostracods, isopods, amphipods, arthropods and gastropods, to name a few. [14] [15] These organisms ultimately play a vital role in the remineralization of matter and aid in breaking down POM that may eventually become permanent sediment.

Presently, it is known that deep-BBL bacterial populations are able to support protozoan bacterivores such as foraminifera and various metazoan zooplankton, which in turn can support larger organisms. Meiofauna and macrofauna found in the deep-BBL include: copepods, annelids, nematodes, bivalves, ostracods, isopods, amphipods, arthropods and gastropods. The current number of species living in the benthic boundary layer is widely unknown. However, it is theorized that up to 10,000,000 species are living in the BBL. [16]

Sedimentation in the Benthic Boundary Layer

The benthic boundary layer (BBL) plays a vital role in the cycling of matter and is commonly referred to as the “endpoint” or "sink" for sediment material, which fuels high metabolic rates for microbial populations. [7] The particles from the pelagic ecosystem sink to the BBL where they will be used by organisms. [2] Studies have estimated that particles from the photic zone sink at a rate of approximately 100 meters per day. [17] Up to 10% of sediment from the photic zone is able to sink all the way down to the benthic boundary layer. [7] However, the total amount of mass that falls to the BBL is impacted by total pelagic production and seasonal variability. [17] After passing through the BBL, this degraded material is either returned to the water column or mobilized into the sediment, where it may eventually become immobilized due to currents or sediment force. Re-suspension or upward fluxes of particles can occur due to environmental disturbances such as wind, currents, tide fluctuations, and benthic storms. [7] With growing concern over the ultimate fate of matter in the ocean, knowledge of the complex biological processes in the deep sea BBL (deep-BBL) and how they affect future sedimentation and remineralization rates is valuable to the scientific community.

Light penetration occurs in the photic zone of the water. Light penetration zones in the water column.png
Light penetration occurs in the photic zone of the water.

At sea depths of 1800m or greater, the BBL is noted as having a near homogeneous temperature and salinity with periodic fluxes of detritus or particulate organic matter (POM). POM is strongly linked to seasonal variations in surface productivity and hydrodynamic conditions. The amount of POM that sinks into the water is directly correlated with production in the photic zone of the water column.

Future Directions

One example of an autonomous underwater vehicle. "Vityaz-D" autonomous underwater vehicle during the "Armiya 2021" exhibition.jpg
One example of an autonomous underwater vehicle.

This zone is of interest to biologist, geologists, sedimentologists, oceanographers, physicists, and engineers, as well as many other scientific disciplines. As the effects of anthropogenic activities begin taking an even greater toll on marine processes, long-term studies are essential in determining the health and stability of the deep-BBL. [16] Current climate variation and warming could also play a major role in changes in the BBL by decimating living species present there and could prompt long-term studies in future scientific communities. Currently, several groups are employing cabled observatories (ALOHA Cabled Observatory, Monterey Accelerated Research System, NEPTUNE, VENUS, and Liquid Jungle Lab (LJL) Panama- PLUTO) to work towards developing these much needed time-series. Cabled underwater networks provide continuous power to cabled instruments to allow for long-term studies. [16] The cables also provide a way for data to be reviewed in real-time from the shore. Time-lapse cameras, sediment traps, bottom-transecting vehicles, baited traps, acoustic arrays, slaved cameras, and autonomous underwater vehicles (AUVs) are also being used to gather more information about the organisms and processes in the benthic boundary layer. [16] Using these research techniques, scientists may begin to find new ways to conserve BBL communities and gather new data about species.

[15]

Related Research Articles

<span class="mw-page-title-main">Benthos</span> Community of organisms that live in the benthic zone

Benthos, also known as benthon, is the community of organisms that live on, in, or near the bottom of a sea, river, lake, or stream, also known as the benthic zone. This community lives in or near marine or freshwater sedimentary environments, from tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths.

<span class="mw-page-title-main">Biological pump</span> Carbon capture process in oceans

The biological pump (or ocean carbon biological pump or marine biological carbon pump) is the ocean's biologically driven sequestration of carbon from the atmosphere and land runoff to the ocean interior and seafloor sediments. In other words, it is a biologically mediated process which results in the sequestering of carbon in the deep ocean away from the atmosphere and the land. The biological pump is the biological component of the "marine carbon pump" which contains both a physical and biological component. It is the part of the broader oceanic carbon cycle responsible for the cycling of organic matter formed mainly by phytoplankton during photosynthesis (soft-tissue pump), as well as the cycling of calcium carbonate (CaCO3) formed into shells by certain organisms such as plankton and mollusks (carbonate pump).

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

The bathypelagic zone or bathyal zone is the part of the open ocean that extends from a depth of 1,000 to 4,000 m below the ocean surface. It lies between the mesopelagic above and the abyssopelagic below. The bathypelagic is also known as the midnight zone because of the lack of sunlight; this feature does not allow for photosynthesis-driven primary production, preventing growth of phytoplankton or aquatic plants. Although larger by volume than the photic zone, human knowledge of the bathypelagic zone remains limited by ability to explore the deep ocean.

<span class="mw-page-title-main">Benthic zone</span> Ecological region at the lowest level of a body of water

The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "the depths." Organisms living in this zone are called benthos and include microorganisms as well as larger invertebrates, such as crustaceans and polychaetes. Organisms here generally live in close relationship with the substrate and many are permanently attached to the bottom. The benthic boundary layer, which includes the bottom layer of water and the uppermost layer of sediment directly influenced by the overlying water, is an integral part of the benthic zone, as it greatly influences the biological activity that takes place there. Examples of contact soil layers include sand bottoms, rocky outcrops, coral, and bay mud.

<span class="mw-page-title-main">Bioturbation</span> Reworking of soils and sediments by organisms

Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

<span class="mw-page-title-main">Sediment–water interface</span> The boundary between bed sediment and the overlying water column

In oceanography and limnology, the sediment–water interface is the boundary between bed sediment and the overlying water column. The term usually refers to a thin layer of water at the very surface of sediments on the seafloor. In the ocean, estuaries, and lakes, this layer interacts with the water above it through physical flow and chemical reactions mediated by the micro-organisms, animals, and plants living at the bottom of the water body. The topography of this interface is often dynamic, as it is affected by physical processes and biological processes. Physical, biological, and chemical processes occur at the sediment-water interface as a result of a number of gradients such as chemical potential gradients, pore water gradients, and oxygen gradients.

In biogeochemistry, remineralisation refers to the breakdown or transformation of organic matter into its simplest inorganic forms. These transformations form a crucial link within ecosystems as they are responsible for liberating the energy stored in organic molecules and recycling matter within the system to be reused as nutrients by other organisms.

<span class="mw-page-title-main">Gelatinous zooplankton</span> Fragile and often translucent animals that live in the water column

Gelatinous zooplankton are fragile animals that live in the water column in the ocean. Their delicate bodies have no hard parts and are easily damaged or destroyed. Gelatinous zooplankton are often transparent. All jellyfish are gelatinous zooplankton, but not all gelatinous zooplankton are jellyfish. The most commonly encountered organisms include ctenophores, medusae, salps, and Chaetognatha in coastal waters. However, almost all marine phyla, including Annelida, Mollusca and Arthropoda, contain gelatinous species, but many of those odd species live in the open ocean and the deep sea and are less available to the casual ocean observer. Many gelatinous plankters utilize mucous structures in order to filter feed. Gelatinous zooplankton have also been called Gelata.

<span class="mw-page-title-main">Siliceous ooze</span> Biogenic pelagic sediment located on the deep ocean floor

Siliceous ooze is a type of biogenic pelagic sediment located on the deep ocean floor. Siliceous oozes are the least common of the deep sea sediments, and make up approximately 15% of the ocean floor. Oozes are defined as sediments which contain at least 30% skeletal remains of pelagic microorganisms. Siliceous oozes are largely composed of the silica based skeletons of microscopic marine organisms such as diatoms and radiolarians. Other components of siliceous oozes near continental margins may include terrestrially derived silica particles and sponge spicules. Siliceous oozes are composed of skeletons made from opal silica SiO2·nH2O, as opposed to calcareous oozes, which are made from skeletons of calcium carbonate (CaCO3·nH2O) organisms (i.e. coccolithophores). Silica (Si) is a bioessential element and is efficiently recycled in the marine environment through the silica cycle. Distance from land masses, water depth and ocean fertility are all factors that affect the opal silica content in seawater and the presence of siliceous oozes.

<span class="mw-page-title-main">Deep-sea community</span> Groups of organisms living deep below the sea surface, sharing a habitat

A deep-sea community is any community of organisms associated by a shared habitat in the deep sea. Deep sea communities remain largely unexplored, due to the technological and logistical challenges and expense involved in visiting this remote biome. Because of the unique challenges, it was long believed that little life existed in this hostile environment. Since the 19th century however, research has demonstrated that significant biodiversity exists in the deep sea.

<span class="mw-page-title-main">Marine snow</span> Shower of organic detritus in the ocean

In the deep ocean, marine snow is a continuous shower of mostly organic detritus falling from the upper layers of the water column. It is a significant means of exporting energy from the light-rich photic zone to the aphotic zone below, which is referred to as the biological pump. Export production is the amount of organic matter produced in the ocean by primary production that is not recycled (remineralised) before it sinks into the aphotic zone. Because of the role of export production in the ocean's biological pump, it is typically measured in units of carbon. The term was coined by explorer William Beebe as observed from his bathysphere. As the origin of marine snow lies in activities within the productive photic zone, the prevalence of marine snow changes with seasonal fluctuations in photosynthetic activity and ocean currents. Marine snow can be an important food source for organisms living in the aphotic zone, particularly for organisms that live very deep in the water column.

<span class="mw-page-title-main">Ecosystem of the North Pacific Subtropical Gyre</span> Major circulating ecosystem of ocean currents

The North Pacific Subtropical Gyre (NPSG) is the largest contiguous ecosystem on earth. In oceanography, a subtropical gyre is a ring-like system of ocean currents rotating clockwise in the Northern Hemisphere and counterclockwise in the Southern Hemisphere caused by the Coriolis Effect. They generally form in large open ocean areas that lie between land masses.

The Southern Pacific Gyre is part of the Earth's system of rotating ocean currents, bounded by the Equator to the north, Australia to the west, the Antarctic Circumpolar Current to the south, and South America to the east. The center of the South Pacific Gyre is the oceanic pole of inaccessibility, the site on Earth farthest from any continents and productive ocean regions and is regarded as Earth's largest oceanic desert. With an area of 37 million square kilometres it makes up ~10 % of the Earth's ocean surface. The gyre, as with Earth's other four gyres, contains an area with elevated concentrations of pelagic plastics, chemical sludge, and other debris known as the South Pacific garbage patch.

<span class="mw-page-title-main">Particulate organic matter</span>

Particulate organic matter (POM) is a fraction of total organic matter operationally defined as that which does not pass through a filter pore size that typically ranges in size from 0.053 millimeters (53 μm) to 2 millimeters.

<span class="mw-page-title-main">Jelly-falls</span> Marine carbon cycling events whereby gelatinous zooplankton sink to the seafloor

Jelly-falls are marine carbon cycling events whereby gelatinous zooplankton, primarily cnidarians, sink to the seafloor and enhance carbon and nitrogen fluxes via rapidly sinking particulate organic matter. These events provide nutrition to benthic megafauna and bacteria. Jelly-falls have been implicated as a major “gelatinous pathway” for the sequestration of labile biogenic carbon through the biological pump. These events are common in protected areas with high levels of primary production and water quality suitable to support cnidarian species. These areas include estuaries and several studies have been conducted in fjords of Norway.

An oxygen minimum zone (OMZ) is characterized as an oxygen-deficient layer in the world's oceans. Typically found between 200m to 1500m deep below regions of high productivity, such as the western coasts of continents. OMZs can be seasonal following the spring-summer upwelling season. Upwelling of nutrient-rich water leads to high productivity and labile organic matter, that is respired by heterotrophs as it sinks down the water column. High respiration rates deplete the oxygen in the water column to concentrations of 2 mg/L or less forming the OMZ. OMZs are expanding, with increasing ocean deoxygenation. Under these oxygen-starved conditions, energy is diverted from higher trophic levels to microbial communities that have evolved to use other biogeochemical species instead of oxygen, these species include Nitrate, Nitrite, Sulphate etc. Several Bacteria and Archea have adapted to live in these environments by using these alternate chemical species and thrive. The most abundant phyla in OMZs are Pseudomonadota, Bacteroidota, Actinomycetota, and Planctomycetota.

<span class="mw-page-title-main">Viral shunt</span>

The viral shunt is a mechanism that prevents marine microbial particulate organic matter (POM) from migrating up trophic levels by recycling them into dissolved organic matter (DOM), which can be readily taken up by microorganisms. The DOM recycled by the viral shunt pathway is comparable to the amount generated by the other main sources of marine DOM.

<span class="mw-page-title-main">Benthic-pelagic coupling</span> Processes that connect the benthic and pelagic zones of a body of water

Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.

<span class="mw-page-title-main">Martin curve</span> Mathematical representation of particulate organic carbon export to ocean floor

The Martin curve is a power law used by oceanographers to describe the export to the ocean floor of particulate organic carbon (POC). The curve is controlled with two parameters: the reference depth in the water column, and a remineralisation parameter which is a measure of the rate at which the vertical flux of POC attenuates. It is named after the American oceanographer John Martin.

References

  1. 1 2 Svensson, Urban; Rahm, Lars (15 June 1988). "Modeling the Near-Bottom Region of the Benthic Boundary Layer". Journal of Geophysical Research. 93 (C6): 6909–6915. Bibcode:1988JGR....93.6909S. doi:10.1029/JC093iC06p06909.
  2. 1 2 3 4 5 6 7 8 Gili, Josep-Maria; Vendrell-Simón, Begoña; Arntz, Wolf; Sabater, Francesc; Ros, Joandomènec (2020-12-11). "The benthos: the ocean's last boundary?". Scientia Marina. 84 (4): 463–475. doi:10.3989/scimar.05091.24A. hdl: 10261/225437 . ISSN   1886-8134. S2CID   229386878.
  3. 1 2 Cartes, Joan E. (1998). "Dynamics of the bathyal Benthic Boundary Layer in the northwestern Mediterranean: depth and temporal variations in macrofaunal–megafaunal communities and their possible connections within deep-sea trophic webs" (PDF). Progress in Oceanography. 41 (1): 111–139. Bibcode:1998PrOce..41..111C. doi:10.1016/S0079-6611(98)00018-4.
  4. Lochte, K. (1992). "Bacterial Standing Stock and Consumption of Organic Carbon in the Benthic Boundary Layer of the Abyssal North Atlantic". Deep-Sea Food Chains and the Global Carbon Cycle. pp. 1–10. doi:10.1007/978-94-011-2452-2_1. ISBN   978-94-010-5082-1.
  5. Bianchi, A; Tholosan, O; Garcin, J; Polychronaki, T; Tselepides, A; Buscail, R; Duineveld, G (2003). "Microbial activities at the benthic boundary layer in the Aegean Sea". Progress in Oceanography. 57 (2): 219. Bibcode:2003PrOce..57..219B. doi:10.1016/S0079-6611(03)00034-X.
  6. Ritzrau, Will (1996). "Microbial activity in the benthic boundary layer: Small-scale distribution and its relationship to the hydrodynamic regime". Journal of Sea Research. 36 (3–4): 171–180. Bibcode:1996JSR....36..171R. doi:10.1016/S1385-1101(96)90787-X.
  7. 1 2 3 4 Angel, M. V.; Boxshall, G. A. (1990). "Life in the Benthic Boundary Layer: Connections to the Mid-Water and Sea Floor [and Discussion]". Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 331 (1616): 15–28. doi:10.1098/rsta.1990.0053. ISSN   0080-4614. JSTOR   53650. S2CID   123179301.
  8. de Jesus Mendes, Pedro A.; Maier, Irene; Thomsen, Laurenz (November 2007). "Effect of physical variables on particle critical erosion shear stress: Hydrostatic pressure, slope and changes in water density". Estuarine, Coastal and Shelf Science. 75 (3): 317–326. Bibcode:2007ECSS...75..317D. doi:10.1016/j.ecss.2007.04.035.
  9. Sorbe, Jean Claude (1999). "Deep-sea macrofaunal assemblages within the Benthic Boundary Layer of the Cap-Ferret Canyon (Bay of Biscay, NE Atlantic)". Deep Sea Research Part II: Topical Studies in Oceanography. 46 (10): 2309–2329. Bibcode:1999DSRII..46.2309S. doi:10.1016/S0967-0645(99)00064-8.
  10. Poremba, K.; Hoppe, H.-G. (1995). "Partial variation of benthic microbial production and hydrolytic enzymatic activity down the continental slope of the Celtic Sea" (PDF). Marine Ecology Progress Series . 118: 237–245. Bibcode:1995MEPS..118..237P. doi:10.3354/meps118237.
  11. Turley, Carol (2000). "Bacteria in the cold deep-sea benthic boundary layer and sedimentâwater interface of the NE Atlantic". FEMS Microbiology Ecology. 33 (2): 89–99. doi: 10.1111/j.1574-6941.2000.tb00731.x . PMID   10967208.
  12. Munn, Colin B (2004). Marine Microbiology. p. 161. ISBN   978-1-85996-288-6.
  13. Guidi-Guilvard, L. D.; Thistle, D.; Khripounoff, A.; Gasparini, S. (2009). "Dynamics of benthic copepods and other meiofauna in the benthic boundary layer of the deep NW Mediterranean Sea" (PDF). Marine Ecology Progress Series. 396: 181–195. Bibcode:2009MEPS..396..181G. doi:10.3354/meps08408.
  14. Sorbe, Jean Claude (1999). "Deep-sea macrofaunal assemblages within the Benthic Boundary Layer of the Cap-Ferret Canyon (Bay of Biscay, NE Atlantic)". Deep Sea Research Part II: Topical Studies in Oceanography. 46 (10): 2309–2329. Bibcode:1999DSRII..46.2309S. doi:10.1016/S0967-0645(99)00064-8.
  15. 1 2 Sherman, Alana D.; Smith, K.L. (2009). "Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy". Deep Sea Research Part II: Topical Studies in Oceanography. 56 (19–20): 1754. Bibcode:2009DSRII..56.1754S. doi:10.1016/j.dsr2.2009.05.020.
  16. 1 2 3 4 Sherman, Alana D.; Smith, K.L. (September 2009). "Deep-sea benthic boundary layer communities and food supply: A long-term monitoring strategy". Deep Sea Research Part II: Topical Studies in Oceanography. 56 (19–20): 1754–1762. Bibcode:2009DSRII..56.1754S. doi:10.1016/j.dsr2.2009.05.020.
  17. 1 2 Baldwin, R.J.; Glatts, R.C.; Smtih Jr., K.L. (2 October 1997). "Particulate matter fluxes into the benthic boundary layer at a long time-series station in the abyssal NE Pacific: composition and fluxes". Deep Sea Research Part II: Topical Studies in Oceanography. 45: 643–665. doi:10.1016/S0967-0645(97)00097-0.

Sources