Benzaldehyde oxime

Last updated
Benzaldehyde oxime
Structure of benzaldoxime.png
Names
Other names
Benzaldoxime
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.012.056 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 213-261-2
PubChem CID
UNII
  • (Z):InChI=1S/C7H7NO/c9-8-6-7-4-2-1-3-5-7/h1-6,9H/b8-6-
    Key: VTWKXBJHBHYJBI-VURMDHGXSA-N
  • (E):InChI=1S/C7H7NO/c9-8-6-7-4-2-1-3-5-7/h1-6,9H/b8-6+
    Key: VTWKXBJHBHYJBI-SOFGYWHQSA-N
  • (Z):C1=CC=C(C=C1)\C=N/O
  • (E):C1=CC=C(C=C1)/C=N/O
Properties
C7H7NO
AppearanceWhite solid
Melting point (Z) 33 °C [1]
(E) 133 °C [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Benzaldehyde oxime is an organic compound with the formula C7H7NO. Benzaldehyde oxime can be synthesized from benzaldehyde and hydroxylamine hydrochloride in presence of a base. The reaction at room temperature in methanol gives 9% E-isomer and 82% Z-isomer. [2]

Reactions

Benzaldehyde oxime undergoes Beckmann rearrangement to form benzamide, catalyzed by nickel salts [3] or photocatalyzed by BODIPY. [4] Its dehydration yields benzonitrile. It can be hydrolyzed to regenerate benzaldehyde. [5]

It reacts with N-chlorosuccinimide in DMF to form benzohydroximoyl chloride, in which chlorine replaces hydrogen on the carbon attached to the nitrogen in benzaldehyde oxime. [6]

Related Research Articles

<span class="mw-page-title-main">Beckmann rearrangement</span> Chemical rearrangement

The Beckmann rearrangement, named after the German chemist Ernst Otto Beckmann (1853–1923), is a rearrangement of an oxime functional group to substituted amides. The rearrangement has also been successfully performed on haloimines and nitrones. Cyclic oximes and haloimines yield lactams.

<span class="mw-page-title-main">Oxime</span> Organic compounds of the form >C=N–OH

In organic chemistry, an oxime is a organic compound belonging to the imines, with the general formula RR’C=N−OH, where R is an organic side-chain and R' may be hydrogen, forming an aldoxime, or another organic group, forming a ketoxime. O-substituted oximes form a closely related family of compounds. Amidoximes are oximes of amides with general structure R1C(=NOH)NR2R3.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

Benzonitrile is the chemical compound with the formula C6H5(CN), abbreviated PhCN. This aromatic organic compound is a colorless liquid with a sweet bitter almond odour. It is mainly used as a precursor to the resin benzoguanamine.

<span class="mw-page-title-main">Pauson–Khand reaction</span> Chemical reaction

The Pauson–Khand (PK) reaction is a chemical reaction, described as a [2+2+1] cycloaddition. In it, an alkyne, an alkene and carbon monoxide combine into a α,β-cyclopentenone in the presence of a metal-carbonyl catalyst.

<span class="mw-page-title-main">Curtius rearrangement</span> Chemical reaction

The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

The Niementowski quinoline synthesis is the chemical reaction of anthranilic acids and ketones to form γ-hydroxyquinoline derivatives.

<span class="mw-page-title-main">4-Aminophenol</span> Chemical compound

4-Aminophenol (or para-aminophenol or p-aminophenol) is an organic compound with the formula H2NC6H4OH. Typically available as a white powder, it is commonly used as a developer for black-and-white film, marketed under the name Rodinal.

The reduction of nitro compounds are chemical reactions of wide interest in organic chemistry. The conversion can be effected by many reagents. The nitro group was one of the first functional groups to be reduced. Alkyl and aryl nitro compounds behave differently. Most useful is the reduction of aryl nitro compounds.

The Barton reaction, also known as the Barton nitrite ester reaction, is a photochemical reaction that involves the photolysis of an alkyl nitrite to form a δ-nitroso alcohol.

Methanesulfonyl chloride is an organosulfur compound with the formula CH3SO2Cl. Using the organic pseudoelement symbol Ms for the methanesulfonyl group CH3SO2–, it is frequently abbreviated MsCl in reaction schemes or equations. It is a colourless liquid that dissolves in polar organic solvents but is reactive toward water, alcohols, and many amines. The simplest organic sulfonyl chloride, it is used to make methanesulfonates and to generate the elusive molecule sulfene.

The Stieglitz rearrangement is a rearrangement reaction in organic chemistry which is named after the American chemist Julius Stieglitz (1867–1937) and was first investigated by him and Paul Nicholas Leech in 1913. It describes the 1,2-rearrangement of trityl amine derivatives to triaryl imines. It is comparable to a Beckmann rearrangement which also involves a substitution at a nitrogen atom through a carbon to nitrogen shift. As an example, triaryl hydroxylamines can undergo a Stieglitz rearrangement by dehydration and the shift of a phenyl group after activation with phosphorus pentachloride to yield the respective triaryl imine, a Schiff base.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

<span class="mw-page-title-main">Achmatowicz reaction</span> Organic synthesis

The Achmatowicz reaction, also known as the Achmatowicz rearrangement, is an organic synthesis in which a furan is converted to a dihydropyran. In the original publication by the Polish Chemist Osman Achmatowicz Jr. in 1971 furfuryl alcohol is reacted with bromine in methanol to 2,5-dimethoxy-2,5-dihydrofuran which rearranges to the dihydropyran with dilute sulfuric acid. Additional reaction steps, alcohol protection with methyl orthoformate and boron trifluoride) and then ketone reduction with sodium borohydride produce an intermediate from which many monosaccharides can be synthesised.

<span class="mw-page-title-main">Oxaziridine</span> Chemical compound

An oxaziridine is an organic molecule that features a three-membered heterocycle containing oxygen, nitrogen, and carbon. In their largest application, oxaziridines are intermediates in the industrial production of hydrazine. Oxaziridine derivatives are also used as specialized reagents in organic chemistry for a variety of oxidations, including alpha hydroxylation of enolates, epoxidation and aziridination of olefins, and other heteroatom transfer reactions. Oxaziridines also serve as precursors to amides and participate in [3+2] cycloadditions with various heterocumulenes to form substituted five-membered heterocycles. Chiral oxaziridine derivatives effect asymmetric oxygen transfer to prochiral enolates as well as other substrates. Some oxaziridines also have the property of a high barrier to inversion of the nitrogen, allowing for the possibility of chirality at the nitrogen center.

In 1976, the Italian chemist, Giovanni Piancatelli and coworkers developed a new method to synthesize 4-hydroxycyclopentenone derivatives from 2-furylcarbinols through an acid-catalyzed rearrangement. This discovery occurred when Piancatelli was studying heterocyclic steroids and their reactive abilities in an acidic environment. As this rearrangement has continued to be studied, it has become a commonly used rearrangement in natural product synthesis because of the ability to create 4-hydroxy-5-substitutedcyclopent-2-enones. Piancatelli’s motive for looking into this new rearrangement stemmed from the ever present 3-oxycyclopentene molecule, specifically its 5-hydroxy derivative, found in biologically active natural products.

4-Nitrotoluene or para-nitrotoluene is an organic compound with the formula CH3C6H4NO2. It is a pale yellow solid. It is one of three isomers of nitrotoluene.

<i>N</i>-Hydroxyphthalimide Chemical compound

N-Hydroxyphthalimide is the N-hydroxy derivative of phthalimide. The compound can be utilized as a catalyst for oxidation reactions, in particular for the selective oxidation with molecular oxygen under mild conditions.

The Griesbaum coozonolysis is a name reaction in organic chemistry that allows for the preparation of tetrasubstituted ozonides (1,2,4-trioxolanes) by the reaction of O-methyl oximes with a carbonyl compound in the presence of ozone. Contrary to their usual roles as intermediates in ozonolysis and other oxidative alkene cleavage reactions, 1,2,4-trioxolanes are relatively stable compounds and are isolable.

References

  1. Karthikeyan, Parasuraman; Aswar, Sachin Arunrao; Muskawar, Prashant Narayan; Sythana, Suresh Kumar; Bhagat, Pundlik Rambhau; Kumar, Sellappan Senthil; Satvat, Pranveer S. (November 2016). "A novel l-amino acid ionic liquid for quick and highly efficient synthesis of oxime derivatives – An environmental benign approach". Arabian Journal of Chemistry. 9: S1036–S1039. doi: 10.1016/j.arabjc.2011.11.007 . ISSN   1878-5352.
  2. 1 2 Kim, Bo Ram; Sung, Gi Hyeon; Kim, Jeum-Jong; Yoon, Yong-Jin (20 April 2013). "A Development of Rapid, Practical and Selective Process for Preparation of Z-Oximes". Journal of the Korean Chemical Society. 57 (2): 295–299. doi: 10.5012/jkcs.2013.57.2.295 . ISSN   1017-2548.
  3. Johnson, A.K.; Miller, I.D. (January 1976). "Kinetic and mechanistic studies of the rearrangement of benzaldoxime to benzamide catalysed by nickel acetate". Inorganica Chimica Acta. 16: 181–184. doi:10.1016/S0020-1693(00)91710-9. ISSN   0020-1693.
  4. Peng, Xiaoyan; liu, Yutong; Shen, Qing; Chen, Dan; Chen, Xueqin; Fu, Yuning; Wang, Jingxia; Zhang, Xiaobin; Jiang, Hezhong; Li, Jiahong (31 August 2022). "BODIPY Photocatalyzed Beckmann Rearrangement and Hydrolysis of Oximes under Visible Light". The Journal of Organic Chemistry. 87 (18): 11958–11967. doi:10.1021/acs.joc.2c00813. eISSN   1520-6904. ISSN   0022-3263. PMID   36044674. S2CID   251979166.
  5. Loupy, André; Régnier, Serge (August 1999). "Solvent-free microwave-assisted Beckmann rearrangement of benzaldehyde and 2-hydroxyacetophenone oximes". Tetrahedron Letters. 40 (34): 6221–6224. doi:10.1016/S0040-4039(99)01159-4. ISSN   0040-4039.
  6. Cherney, Robert J.; Wang, Zhongyu. Preparation of 5-[3-phenyl-4-(trifluoromethyl)isoxazol-5-yl]-1,2,4-oxadiazole derivatives for treatment of autoimmune and chronic inflammatory diseases. 2012 WO 2012061459 A1.