Beveled glass

Last updated
A beveled glass mirror, ca. 1910 Mirror, ca. 1910 (CH 52027753).jpg
A beveled glass mirror, ca. 1910

Beveled glass is usually made by taking thick glass and creating an angled surface cut (bevel) around the entire periphery. [1] Bevels act as prisms in sunlight creating an interesting color refraction which both highlights the glass work and provides a spectrum of colors which would ordinarily be absent in clear float glass.

Beveled glass can be obtained as clusters which are arranged to create a specific design. These can vary from simple three or four piece designs, often used in top lights (commonly known as transoms) of windows and conservatories, to more complex combinations of many pieces, suitable for larger panels such as doors and side screens (known in the door industry as sidelites).

Beveled glass has also been used with clear and colored textured glass to create designs. Textured glass is typically 18 inch (3 mm) thick and has a distinct visible texture. Beveled glass is typical made from 14 inch (6 mm) float plate glass but thicknesses up to 12 inch (10 mm) have been used for larger windows. The width of the bevel also can vary depending on the desired effect. The combination of beveled glass is juxtaposed to the textured glass creating dramatic visual effects.

Beveling was traditionally done manually by grinding and polishing operations: [2]

The bevel is obtained by holding the glass against a horizontal roughing wheel, sand and water also playing an important part in the operation. The bevel, like the surface, must also be polished. An emory wheel is used to remove the sand and clean the surface. Then after being held against a horizontal grindstone, a polishing wheel with pumice stone is used. To brighten the glass, a buffing wheel with rouge upon it is employed.

Modern beveled glass is machine made. The automation of this traditionally hand made craft was facilitated by the development of plastic based metal deburring wheels which provided adequate smoothing of the ground glass face without the difficulties involved with traditional aluminum oxide and natural sandstone smoothing stones. The best natural smoothing stones came from a quarry in Newcastle, England and would be round wheels with a central hole several feet in diameter and 8 inches (200 mm) thick. The stone's quality was dictated by the consistency of the sandstone, as any imperfection would scratch the glass being smoothed. These large stones would smooth the rough scratches created by the grinding process. The type of grinding and smoothing equipment depended upon whether one was creating straight line, outside or inside curved bevels. Outside curves and straight lines are ground on a flat rotating platter covered in a thin slurry of silicon carbide and water. Inside curves were ground on a silicon carbide grinding wheel of appropriate grit with water running on the wheel. Smoothing the ground face was done using the Newcastle stone for outside curves and straight line bevels and a cone shaped polishing wheel of relatively fine grit aluminum oxide.

Despite the advantages of the plastic smoothing wheels, the crispness of the bevel edge is superior on the stone smoothed traditionally beveled pieces and can distinguish hand made beveled glass.[ citation needed ] The final step was polishing the beveled face using a felt covered wheel with a slurry of water and optical polishing powder. It was not uncommon to have pieces with a combination of outside and inside curve as well as straight line bevels. The objective was to have an even bevel width, even edge thickness with no facets in the bevel face and a crisp bevel edge.

In the early 1900s in USA it was not uncommon to see beveled oval door glass 5 feet (1.5 m) in length with 2-inch (50 mm) wide bevels on 38-inch (10 mm) thick plate glass. Creating such bevels required two craftsmen working as a team.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Lapidary</span> Shaping of gemstones for jewelry

Lapidary is the practice of shaping stone, minerals, or gemstones into decorative items such as cabochons, engraved gems, and faceted designs. A person who practices lapidary is known as a lapidarist. A lapidarist uses the lapidary techniques of cutting, grinding, and polishing. Hardstone carving requires specialized carving techniques.

<span class="mw-page-title-main">Terrazzo</span> Cementitious composite material, usually used in flooring

Terrazzo is a composite material, poured in place or precast, which is used for floor and wall treatments. It consists of chips of marble, quartz, granite, glass, or other suitable material, poured with a cementitious binder, polymeric, or a combination of both. Metal strips often divide sections, or changes in color or material in a pattern. Additional chips may be sprinkled atop the mix before it sets. After it is cured it is ground and polished smooth or otherwise finished to produce a uniformly textured surface. "Terrazzo" is also often used to describe any pattern similar to the original terrazzo floors.

<span class="mw-page-title-main">Cabochon</span> Gemstone that has been shaped and polished

A cabochon is a gemstone that has been shaped and polished, as opposed to faceted. The resulting form is usually a convex (rounded) obverse with a flat reverse. Cabochon was the default method of preparing gemstones before gemstone cutting developed.

An abrasive is a material, often a mineral, that is used to shape or finish a workpiece through rubbing which leads to part of the workpiece being worn away by friction. While finishing a material often means polishing it to gain a smooth, reflective surface, the process can also involve roughening as in satin, matte or beaded finishes. In short, the ceramics which are used to cut, grind and polish other softer materials are known as abrasives.

<span class="mw-page-title-main">Sandpaper</span> Abrasive material used for smoothing softer materials

Sandpaper, also known as glasspaper or as coated abrasive, is a type of material that consists of sheets of paper or cloth with an abrasive substance glued to one face. In the modern manufacture of these products, sand and glass have been replaced by other abrasives such as aluminium oxide or silicon carbide. It is common to use the name of the abrasive when describing the paper, e.g. "aluminium oxide paper", or "silicon carbide paper".

<span class="mw-page-title-main">Japanese kitchen knife</span> Type of knife used for food preparation

A Japanese kitchen knife is a type of kitchen knife used for food preparation. These knives come in many different varieties and are often made using traditional Japanese blacksmithing techniques. They can be made from stainless steel, or hagane, which is the same kind of steel used to make Japanese swords. Most knives are referred to as hōchō or the variation -bōchō in compound words but can have other names including -kiri. There are four general categories used to distinguish the Japanese knife designs: handle, blade grind, steel, and construction.

<span class="mw-page-title-main">Grind</span> Cross sectional shape of a blade in a plane normal to its edge

A blade's grind is its cross-sectional shape in a plane normal to the edge. Grind differs from blade profile, which is the blade's cross-sectional shape in the plane containing the blade's edge and the centre contour of the blade's back. The grind of a blade should not be confused with the bevel forming the sharpened edge; it more usually describes the overall cross-section of the blade, not inclusive of the beveled cutting edge which is typically of a different, less acute angle as the bevel ground onto the blade to give it a cross-sectional shape. For example, the famous Buck 110 hunting knife has a "hollow ground" blade, with concave blade faces, but the cutting edge itself is a simple, flat-ground bevel of lesser angle. It would be difficult, if not impossible, to put a "hollow grind" onto the actual cutting edge of the blade itself, which is a very narrow and small bevel.

<span class="mw-page-title-main">Kitchen knife</span> Knives intended for use in the process of preparing food

A kitchen knife is any knife that is intended to be used in food preparation. While much of this work can be accomplished with a few general-purpose knives – notably a large chef's knife, a tough cleaver, a small paring knife and some sort of serrated blade – there are also many specialized knives that are designed for specific tasks. Kitchen knives can be made from several different materials.

<span class="mw-page-title-main">Grinding wheel</span> Abrasive cutting tool for grinders

Grinding wheels are wheels that contain abrasive compounds for grinding and abrasive machining operations. Such wheels are also used in grinding machines.

<span class="mw-page-title-main">Sharpening stone</span> Abrasive slab used to sharpen tools

Sharpening stones, or whetstones, are used to sharpen the edges of steel tools such as knives through grinding and honing.

<span class="mw-page-title-main">Sharpening</span> Creating or refining the edge of a cutting tool

Sharpening is the process of creating or refining the edge joining two non-coplanar faces into a converging apex, thereby creating an edge of appropriate shape on a tool or implement designed for cutting. Sharpening is done by removing material on an implement with an abrasive substance harder than the material of the implement, followed sometimes by processes to polish/hone the sharp surface to increase smoothness.

Optical manufacturing and testing is the process of manufacturing and testing optical components. It spans a wide range of manufacturing procedures and optical test configurations.

<span class="mw-page-title-main">Knife sharpening</span>

Knife sharpening is the process of making a knife or similar tool sharp by grinding against a hard, rough surface, typically a stone, or a flexible surface with hard particles, such as sandpaper. Additionally, a leather razor strop, or strop, is often used to straighten and polish an edge.

<span class="mw-page-title-main">Polishing (metalworking)</span> Abrasive process for creating smooth finished surfaces

Polishing and buffing are finishing processes for smoothing a workpiece's surface using an abrasive and a work wheel or a leather strop. Technically, polishing refers to processes that uses an abrasive that is glued to the work wheel, while buffing uses a loose abrasive applied to the work wheel. Polishing is a more aggressive process, while buffing is less harsh, which leads to a smoother, brighter finish. A common misconception is that a polished surface has a mirror-bright finish, however, most mirror-bright finishes are actually buffed.

<span class="mw-page-title-main">Diamond tool</span> Cutting tool with diamond grains

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

<span class="mw-page-title-main">Rippled glass</span> Textured glass

Rippled glass refers to textured glass with marked surface waves. Louis Comfort Tiffany made use of such textured glass to represent, for example, water or leaf veins.

A glass cutter is a tool used to make a shallow score in one surface of a piece of glass that is to be broken in two pieces, for example to fit a window. The scoring makes a split in the surface of the glass which encourages the glass to break along the score. This is not to be confused with the tools used to make cut glass objects.

<span class="mw-page-title-main">Grinding (abrasive cutting)</span> Machining process using a grinding wheel

Grinding is a type of abrasive machining process which uses a grinding wheel as cutting tool.

Surface grinding is done on flat surfaces to produce a smooth finish.

<span class="mw-page-title-main">Disc cutter</span> Power tool used to cut hard materials

A disc cutter is a specialised, often hand-held, power tool used for cutting hard materials, ceramic tile, metal, concrete, and stone for example. This tool is very similar to an angle grinder, chop saw, or even a die grinder, with the main difference being the cutting disc itself. This tool is highly efficient at cutting very hard materials, especially when compared to hand tools.

References

  1. Rich, Chris; Mitchell, Martha; Ward, Rachel (1997). Stained Glass Basics: Techniques, Tools, Projects. Sterling Publishing Company, Inc. ISBN   9780806948775.
  2. "How Mirrors are Made". Popular Mechanics. VII: 129–130. 1905.