This article may have been created or edited in return for undisclosed payments, a violation of Wikipedia's terms of use. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. (July 2018) |
Bio-inks are materials used to produce engineered/artificial live tissue using 3D printing. These inks are mostly composed of the cells that are being used, but are often used in tandem with additional materials that envelope the cells. The combination of cells and usually biopolymer gels are defined as a bio-ink. They must meet certain characteristics, including such as rheological, mechanical, biofunctional and biocompatibility properties, among others. Using bio-inks provides a high reproducibility and precise control over the fabricated constructs in an automated manner. [1] These inks are considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM). [2]
Like the thermoplastics that are often utilized in traditional 3D printing, bio-inks can be extruded through printing nozzles or needles into filaments that can maintain its shape fidelity after deposition. However, bio-ink are sensitive to the normal 3D printing processing conditions.
Differences from traditional 3D printing materials
Bioink compositions and chemistries are often inspired and derived from existing hydrogel biomaterials. However, these hydrogel biomaterials were often developed to be easily pipetted and cast into well plates and other molds. Altering the composition of these hydrogels to permit filament formation is necessary for their translation as bioprintable materials. However, the unique properties of bioinks offer new challenges in characterizing material printability. [3] [4]
Traditional bioprinting techniques involve depositing material layer-by-layer to create the end structure, but in 2019 a new method called volumetric bioprinting was introduced. Volumetric bioprinting occurs when a bio-ink is placed in a liquid cell and is selectively irradiated by an energy source. This method will actively polymerize the irradiated material and that will comprise the final structure. Manufacturing biomaterials using volumetric bioprinting of bio-inks can greatly decrease the manufacturing time. In materials science, this is a breakthrough that allows personalized biomaterials to be quickly generated. The procedure must be developed and studied clinically before any major advances in the bioprinting industry can be realized. [5]
Unlike traditional 3D printing materials such as thermoplastics that are essentially 'fixed' once they are printed, bioinks are a dynamic system because of their high water content and often non-crystalline structure. The shape fidelity of the bioink after filament deposition must also be characterized. [6] Finally, the printing pressure and nozzle diameter must be taken into account to minimize the shear stresses placed on the bioink and on any cells within the bioink during the printing process. Too high shear forces may damage or lyse cells, adversely affecting cell viability.
Important considerations in printability include:
Structural bio inks are used to create the framework of the desired print using materials like alginate, decellularized ECM, gelatins, and more. From the choice of material you are able to control mechanical properties, shape and size, and cell viability. These factors make this type one of the more basic but still one of the most important aspects to a Bio-printed design.
Sacrificial bio inks are materials that will be used to support during printing and then will be removed from the print to create channels or empty regions within the outside structure. Channels and open spaces are massively important to allow for cellular migration and nutrient transportation lending them useful if trying to design a vascular network. These materials need to have specific properties dependent on the surrounding material that needs to stay such as water solubility, degradation under certain temperatures, or natural rapid degradation. Non Crosslinked gelatins and pluronics are examples of potential sacrificial material.
Functional bio inks are some of the more complicated forms of ink, these are used to guide cellular growth, development, and differentiation. This can be done in the form of integrating growth factors, biological cues, and physical cues such as surface texture and shape. These materials could be described as the most important as they are the biggest factor in developing a functional tissue as well as structural related function.
Bio printed structures can be extremely fragile and flimsy due to intricate structures and overhangs in the early period after printing. These support structures give them the chance to get out of that phase. Once the construct is self supportive, these can be removed. In other situations, such as introducing the construct to a bioreactor after printing, these structures can be used to allow for easy interface with systems used to develop the tissue at a faster rate.
Alginate is a naturally derived biopolymer from the cell wall of brown seaweed that has been widely used in biomedicine because of its biocompatibility, low cytotoxicity, mild gelation process and low cost. Alginates are particularly suitable for bioprinting due to their mild cross-linking conditions via incorporation of divalent ions such as calcium. These materials have been adopted as bioinks through increasing their viscosity. [7] Additionally, these alginate-based bioinks can be blended with other materials such as nanocellulose for application in tissues such as cartilage. [8]
Since fast gelation leads to good printability, bioprinting mainly utilizes alginate, modified alginate alone or alginate blended with other biomaterials. Alginate has become the most widely used natural polymer for bioprinting and is most likely the most common material of choice for in vivo studies.
Gellan gum is a hydrophilic and high-molecular weight anionic polysaccharide produced by bacteria. It is very similar to alginate and can form a hydrogel at low temperatures. It is even approved for use in food by the United States Food and Drug Administration (FDA). Gellan gum is mainly used as a gelling agent and stabilizer. However, it is almost never used alone for bioprinting purposes. [1]
Agarose is a polysaccharide extracted from marine algae and red seaweed. It is commonly used in electrophoresis applications as well as tissue engineering for its gelling properties. The melting and gelling temperatures of agarose can be modified chemically, which in turn makes its printability better. Having a bio-ink that can be modified to fit a specific need and condition is ideal.
Gelatin has been widely utilized as a biomaterial for engineered tissues. The formation of gelatin scaffolds is dictated by the physical chain entanglements of the material which forms a gel at low temperatures. However, at physiological temperatures, the viscosity of gelatin drops significantly. Methacrylation of gelatin is a common approach for the fabrication of gelatin scaffolds that can be printed and maintain shape fidelity at physiological temperature. [9]
Collagen is the main protein in the extracellular matrix of mammalian cells. Because of this collagen possesses tissue-matching physicochemical properties and biocompatibility. On top of this, collagen has already been used in biomedical applications. Some studies that collagen has been used in are engineered skin tissue, muscle tissue and even bone tissue. [1]
Pluronics have been utilized in printing application due to their unique gelation properties. [10] Below physiological temperatures, the pluronics exhibit low viscosity. However, at physiological temperatures, the pluronics form a gel. However, the formed gel is dominated by physical interactions. A more permanent pluronic-based network can be formed through the modification of the pluronic chain with acrylate groups that may be chemically cross-linked. [11]
Polyethylene glycol (PEG) is a synthetic polymer synthesized by ethylene oxide polymerization. It is a favorable synthetic material because of its tailorable but typically strong mechanical properties. [1] PEG advantages also include non-cytotoxicity and non-immunogenicity. However, PEG is bioinert and needs to be combined with other biologically active hydrogels.
Decellularized extracellular matrix based bioinks can be derived from nearly any mammalian tissue. Organs such as heart, muscle, cartilage, bone, and fat are decellularized, lyophilized, and pulverized, to create a soluble matrix that can then be formed into gels. [12] These bioinks possess several advantages over other materials due to their derivation from mature tissue. They consist of a complex mixture of ECM structural and decorating proteins specific to their tissue origin, and provide tissue-specific cues to cells. Often these bioinks are cross-linked through thermal gelation or chemical cross-linking such as through the use of riboflavin. [13] Different additives, e.g. GelMA, alginate, have been used to improve the printability of decellularized ECM. [14]
Tissue engineering is a biomedical engineering discipline that uses a combination of cells, engineering, materials methods, and suitable biochemical and physicochemical factors to restore, maintain, improve, or replace different types of biological tissues. Tissue engineering often involves the use of cells placed on tissue scaffolds in the formation of new viable tissue for a medical purpose, but is not limited to applications involving cells and tissue scaffolds. While it was once categorized as a sub-field of biomaterials, having grown in scope and importance, it can is considered as a field of its own.
A hydrogel is a biphasic material, a mixture of porous, permeable solids and at least 10% by weight or volume of interstitial fluid composed completely or mainly by water. In hydrogels the porous permeable solid is a water insoluble three dimensional network of natural or synthetic polymers and a fluid, having absorbed a large amount of water or biological fluids. These properties underpin several applications, especially in the biomedical area. Many hydrogels are synthetic, but some are derived from nature. The term 'hydrogel' was coined in 1894.
Alginic acid, also called algin, is a naturally occurring, edible polysaccharide found in brown algae. It is hydrophilic and forms a viscous gum when hydrated. With metals such as sodium and calcium, its salts are known as alginates. Its colour ranges from white to yellowish-brown. It is sold in filamentous, granular, or powdered forms.
Organ printing utilizes techniques similar to conventional 3D printing where a computer model is fed into a printer that lays down successive layers of plastics or wax until a 3D object is produced. In the case of organ printing, the material being used by the printer is a biocompatible plastic. The biocompatible plastic forms a scaffold that acts as the skeleton for the organ that is being printed. As the plastic is being laid down, it is also seeded with human cells from the patient's organ that is being printed for. After printing, the organ is transferred to an incubation chamber to give the cells time to grow. After a sufficient amount of time, the organ is implanted into the patient.
Cardiomyoplasty is a surgical procedure in which healthy muscle from another part of the body is wrapped around the heart to provide support for the failing heart. Most often the latissimus dorsi muscle is used for this purpose. A special pacemaker is implanted to make the skeletal muscle contract. If cardiomyoplasty is successful and increased cardiac output is achieved, it usually acts as a bridging therapy, giving time for damaged myocardium to be treated in other ways, such as remodeling by cellular therapies.
A nerve guidance conduit is an artificial means of guiding axonal regrowth to facilitate nerve regeneration and is one of several clinical treatments for nerve injuries. When direct suturing of the two stumps of a severed nerve cannot be accomplished without tension, the standard clinical treatment for peripheral nerve injuries is autologous nerve grafting. Due to the limited availability of donor tissue and functional recovery in autologous nerve grafting, neural tissue engineering research has focused on the development of bioartificial nerve guidance conduits as an alternative treatment, especially for large defects. Similar techniques are also being explored for nerve repair in the spinal cord but nerve regeneration in the central nervous system poses a greater challenge because its axons do not regenerate appreciably in their native environment.
Ali Khademhosseini is the CEO of the Terasaki Institute, non-profit research organization in Los Angeles, and Omeat Inc., a cultivated-meat startup. Before taking his current CEO roles, he spent one year at Amazon Inc. Prior to that he was the Levi Knight chair and professor at the University of California-Los Angeles where he held a multi-departmental professorship in Bioengineering, Radiology, Chemical, and Biomolecular Engineering as well as the Director of Center for Minimally Invasive Therapeutics (C-MIT). From 2005 to 2017, he was a professor at Harvard Medical School, and the Wyss Institute for Biologically Inspired Engineering.
Nano-scaffolding or nanoscaffolding is a medical process used to regrow tissue and bone, including limbs and organs. The nano-scaffold is a three-dimensional structure composed of polymer fibers very small that are scaled from a Nanometer scale. Developed by the American military, the medical technology uses a microscopic apparatus made of fine polymer fibers called a scaffold. Damaged cells grip to the scaffold and begin to rebuild missing bone and tissue through tiny holes in the scaffold. As tissue grows, the scaffold is absorbed into the body and disappears completely.
Acellular dermis is a type of biomaterial derived from processing human or animal tissues to remove cells and retain portions of the extracellular matrix (ECM). These materials are typically cell-free, distinguishing them from classical allografts and xenografts, can be integrated or incorporated into the body, and have been FDA approved for human use for more than 10 years in a wide range of clinical indications.
In tissue engineering, neo-organ is the final structure of a procedure based on transplantation consisting of endogenous stem/progenitor cells grown ex vivo within predesigned matrix scaffolds. Current organ donation faces the problems of patients waiting to match for an organ and the possible risk of the patient's body rejecting the organ. Neo-organs are being researched as a solution to those problems with organ donation. Suitable methods for creating neo-organs are still under development. One experimental method is using adult stem cells, which use the patients own stem cells for organ donation. Currently this method can be combined with decellularization, which uses a donor organ for structural support but removes the donors cells from the organ. Similarly, the concept of 3-D bioprinting organs has shown experimental success in printing bioink layers that mimic the layer of organ tissues. However, these bioinks do not provide structural support like a donor organ. Current methods of clinically successful neo-organs use a combination of decellularized donor organs, along with adult stem cells of the organ recipient to account for both the structural support of a donor organ and the personalization of the organ for each individual patient to reduce the chance of rejection.
Decellularization is the process used in biomedical engineering to isolate the extracellular matrix (ECM) of a tissue from its inhabiting cells, leaving an ECM scaffold of the original tissue, which can be used in artificial organ and tissue regeneration. Organ and tissue transplantation treat a variety of medical problems, ranging from end organ failure to cosmetic surgery. One of the greatest limitations to organ transplantation derives from organ rejection caused by antibodies of the transplant recipient reacting to donor antigens on cell surfaces within the donor organ. Because of unfavorable immune responses, transplant patients suffer a lifetime taking immunosuppressing medication. Stephen F. Badylak pioneered the process of decellularization at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh. This process creates a natural biomaterial to act as a scaffold for cell growth, differentiation and tissue development. By recellularizing an ECM scaffold with a patient’s own cells, the adverse immune response is eliminated. Nowadays, commercially available ECM scaffolds are available for a wide variety of tissue engineering. Using peracetic acid to decellularize ECM scaffolds have been found to be false and only disinfects the tissue.
Three dimensional (3D) bioprinting is the utilization of 3D printing–like techniques to combine cells, growth factors, bio-inks, and biomaterials to fabricate functional structures that were traditionally used for tissue engineering applications but in recent times have seen increased interest in other applications such as biosensing, and environmental remediation. Generally, 3D bioprinting utilizes a layer-by-layer method to deposit materials known as bio-inks to create tissue-like structures that are later used in various medical and tissue engineering fields. 3D bioprinting covers a broad range of bioprinting techniques and biomaterials. Currently, bioprinting can be used to print tissue and organ models to help research drugs and potential treatments. Nonetheless, translation of bioprinted living cellular constructs into clinical application is met with several issues due to the complexity and cell number necessary to create functional organs. However, innovations span from bioprinting of extracellular matrix to mixing cells with hydrogels deposited layer by layer to produce the desired tissue. In addition, 3D bioprinting has begun to incorporate the printing of scaffolds which can be used to regenerate joints and ligaments. Apart from these, 3D bioprinting has recently been used in environmental remediation applications, including the fabrication of functional biofilms that host functional microorganisms that can facilitate pollutant removal.
The in vivo bioreactor is a tissue engineering paradigm that uses bioreactor methodology to grow neotissue in vivo that augments or replaces malfunctioning native tissue. Tissue engineering principles are used to construct a confined, artificial bioreactor space in vivo that hosts a tissue scaffold and key biomolecules necessary for neotissue growth. Said space often requires inoculation with pluripotent or specific stem cells to encourage initial growth, and access to a blood source. A blood source allows for recruitment of stem cells from the body alongside nutrient delivery for continual growth. This delivery of cells and nutrients to the bioreactor eventually results in the formation of a neotissue product.
Hydrogel from wood-based nanofibrillated cellulose (NFC) is used as a matrix for 3D cell culture, providing a three-dimensional environment that more closely resembles the conditions found in living tissue. As plant based material, it does not contain any human- or animal-derived components. Nanocellulose is instead derived from wood pulp that has been processed to create extremely small, nanoscale fibers. These fibers can be used to create a hydrogel, which is a type of material that is made up of a network of cross-linked polymer chains and is able to hold large amounts of water.
4-dimensional printing uses the same techniques of 3D printing through computer-programmed deposition of material in successive layers to create a three-dimensional object. However, in 4D printing, the resulting 3D shape is able to morph into different forms in response to environmental stimulus, with the 4th dimension being the time-dependent shape change after the printing. It is therefore a type of programmable matter, wherein after the fabrication process, the printed product reacts with parameters within the environment and changes its form accordingly.
Hydrogels are three-dimensional networks consisting of chemically or physically cross-linked hydrophilic polymers. The insoluble hydrophilic structures absorb polar wound exudates and allow oxygen diffusion at the wound bed to accelerate healing. Hydrogel dressings can be designed to prevent bacterial infection, retain moisture, promote optimum adhesion to tissues, and satisfy the basic requirements of biocompatibility. Hydrogel dressings can also be designed to respond to changes in the microenvironment at the wound bed. Hydrogel dressings should promote an appropriate microenvironment for angiogenesis, recruitment of fibroblasts, and cellular proliferation.
Antonios Georgios Mikos is a Greek-American biomedical engineer who is the Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering at Rice University. He specialises in biomaterials, drug delivery, and tissue engineering.
Artificial cartilage is a synthetic material made of hydrogels or polymers that aims to mimic the functional properties of natural cartilage in the human body. Tissue engineering principles are used in order to create a non-degradable and biocompatible material that can replace cartilage. While creating a useful synthetic cartilage material, certain challenges need to be overcome. First, cartilage is an avascular structure in the body and therefore does not repair itself. This creates issues in regeneration of the tissue. Synthetic cartilage also needs to be stably attached to its underlying surface i.e. the bone. Lastly, in the case of creating synthetic cartilage to be used in joint spaces, high mechanical strength under compression needs to be an intrinsic property of the material.
Microgravity bioprinting is the utilization of 3D bioprinting techniques under microgravity conditions to fabricate highly complex, functional tissue and organ structures. The zero gravity environment circumvents some of the current limitations of bioprinting on Earth including magnetic field disruption and biostructure retention during the printing process. Microgravity bioprinting is one of the initial steps to advancing in space exploration and colonization while furthering the possibilities of regenerative medicine.
Bioprinting drug delivery is a method based on the use of three-dimensional printing of biomaterials through an additive manufacturing technique to develop drug delivery vehicles that are biocompatible tissue-specific hydrogels or implantable devices. 3D bioprinting uses printed cells and biological molecules to manufacture tissues, organs, or biological materials in a scaffold-free manner that mimics living human tissue to provide localized and tissue-specific drug delivery, allowing for targeted disease treatments with scalable and complex geometry.