Names | |
---|---|
Other names Gum gellan; E418; [D-Glc(β1→4)D-GlcA(β1→4)D-Glc(β1→4)L-Rha(α1→3)]n | |
Identifiers | |
ECHA InfoCard | 100.068.267 |
EC Number |
|
E number | E418 (thickeners, ...) |
UNII | |
CompTox Dashboard (EPA) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Gellan gum is a water-soluble anionic polysaccharide produced by the bacterium Sphingomonas elodea (formerly Pseudomonas elodea based on the taxonomic classification at the time of its discovery). [1] The gellan-producing bacterium was discovered and isolated by the former Kelco Division of Merck & Company, Inc. in 1978 from the lily plant tissue from a natural pond in Pennsylvania. It was initially identified as a gelling agent to replace agar at significantly lower concentrations in solid culture media for the growth of various microorganisms. [2] Its initial commercial product with the trademark as Gelrite gellan gum, was subsequently identified as a suitable agar substitute as gelling agent in various clinical bacteriological media. [3]
The repeating unit of the polymer is a tetrasaccharide, which consists of two residues of D-glucose and one of each residues of L-rhamnose and D-glucuronic acid. The tetrasaccharide repeat has the following structure:
[D-Glc(β1→4)D-GlcA(β1→4)D-Glc(β1→4)L-Rha(α1→3)]n
Gellan gum products are generally put into two categories, low acyl and high acyl depending on number of acetate groups attached to the polymer. The low acyl gellan gum products form firm, non-elastic, brittle gels, whereas the high acyl gellan gum forms soft and elastic gels. [4]
Gellan gum is initially used as a gelling agent, alternative to agar, in microbiological culture. It is able to withstand 120 °C heat. It was identified as an especially useful gelling agent in culturing thermophilic microorganisms. [5] One needs only approximately half the concentration of gellan gum as agar to reach an equivalent gel strength, though the exact texture and quality depends on the concentration of the divalent cations present. Gellan gum is also used as gelling agent in plant cell culture on Petri dishes, as it provides a very clear gel, facilitating light microscopical analyses of the cells and tissues. Although advertised as being inert, experiments with the moss Physcomitrella patens have shown that choice of the gelling agent—agar or Gelrite—does influence phytohormone sensitivity of the plant cell culture. [6]
As a food additive, gellan gum was first approved for food use in Japan (1988). Gellan gum has subsequently been approved for food, non-food, cosmetic and pharmaceutical uses by many other countries such as US, Canada, China, Korea and the European Union etc. It is widely used as a thickener, emulsifier, and stabilizer. It has E number E418. It was an integral part of the now defunct Orbitz soft drink. It is used as the gelling agent, as an alternative to gelatin, in the manufacture of vegan varieties of "gum" candies.
It is used in plant-based milks to keep plant protein suspended in the milk. [7] Gellan has also become popular in haute cuisine, and in particular in molecular gastronomy and other scientifically-informed schools of cooking, to make flavorful gels; British chef Heston Blumenthal and American chef Wylie Dufresne are generally considered to be the earliest chefs to incorporate gellan into high-end restaurant cooking, but other chefs have since adopted the innovation. [8]
Gellan gum, when properly hydrated, can be used in ice cream and sorbet recipes that behave as a fluid gel after churning. The benefit of using gellan gum is that the ice cream or sorbet can be set in a dish of flaming alcohol without actually melting. [9]
This section needs additional citations for verification .(March 2013) |
Gellan was discovered and developed as a commercial biogum hydrocolloid product by Kelco, then a division of Merck & Co. In the United States, Kelco was responsible for obtaining food approval for gellan gum worldwide. In other markets that are fond of innovative food ingredients, such as Japan, food approval has been obtained by local food and beverage manufacturers. Kelco, now the CP Kelco family of companies owned by J.M. Huber Corporation historically, produced the majority of food grade gellan gum. However, since the entry into the segment of Royal DSM, the Dutch science and food nutrition conglomerate, users of food grade gellan gum now procure from 2 high quality suppliers. Chinese suppliers have also been increasingly aggressive in gellan gum production. However, the lack of consistent quality production, adherence to stringent food grade requirements and lack of a strong technical and application support means that such gellan gum is primarily destined for use in personal care or household care applications.
Pure gellan gum is one of the most expensive hydrocolloids. Its cost in use, however, is competitive with other much lower-priced hydrocolloids.[ clarification needed ]
Agar, or agar-agar, is a jelly-like substance consisting of polysaccharides obtained from the cell walls of some species of red algae, primarily from "ogonori" (Gracilaria) and "tengusa" (Gelidiaceae). As found in nature, agar is a mixture of two components, the linear polysaccharide agarose and a heterogeneous mixture of smaller molecules called agaropectin. It forms the supporting structure in the cell walls of certain species of algae and is released on boiling. These algae are known as agarophytes, belonging to the Rhodophyta phylum. The processing of food-grade agar removes the agaropectin, and the commercial product is essentially pure agarose.
A hemicellulose is one of a number of heteropolymers, such as arabinoxylans, present along with cellulose in almost all terrestrial plant cell walls. Cellulose is crystalline, strong, and resistant to hydrolysis. Hemicelluloses are branched, shorter in length than cellulose, and also show a propensity to crystallize. They can be hydrolyzed by dilute acid or base as well as a myriad of hemicellulase enzymes.
Polysaccharides, or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with water (hydrolysis) using amylase enzymes as catalyst, which produces constituent sugars. They range in structure from linear to highly branched. Examples include storage polysaccharides such as starch, glycogen and galactogen and structural polysaccharides such as cellulose and chitin.
Guar gum, also called guaran, is a galactomannan polysaccharide extracted from guar beans that has thickening and stabilizing properties useful in food, feed, and industrial applications. The guar seeds are mechanically dehusked, hydrated, milled and screened according to application. It is typically produced as a free-flowing, off-white powder.
Carrageenans or carrageenins are a family of natural linear sulfated polysaccharides that are extracted from red edible seaweeds. Carrageenans are widely used in the food industry, for their gelling, thickening, and stabilizing properties. Their main application is in dairy and meat products, due to their strong binding to food proteins. In recent years, carrageenans have emerged as a promising candidate in tissue engineering and regenerative medicine applications as they resemble native glycosaminoglycans (GAGs). They have been mainly used for tissue engineering, wound coverage, and drug delivery.
A microbiological culture, or microbial culture, is a method of multiplying microbial organisms by letting them reproduce in predetermined culture medium under controlled laboratory conditions. Microbial cultures are foundational and basic diagnostic methods used as research tools in molecular biology.
Xanthan gum is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent and stabilizer that prevents ingredients from separating. It can be produced from simple sugars by fermentation and derives its name from the species of bacteria used, Xanthomonas campestris.
A growth medium or culture medium is a solid, liquid, or semi-solid designed to support the growth of a population of microorganisms or cells via the process of cell proliferation or small plants like the moss Physcomitrella patens. Different types of media are used for growing different types of cells.
A thickening agent or thickener is a substance which can increase the viscosity of a liquid without substantially changing its other properties. Edible thickeners are commonly used to thicken sauces, soups, and puddings without altering their taste; thickeners are also used in paints, inks, explosives, and cosmetics.
Curdlan is a water-insoluble linear beta-1,3-glucan, a high-molecular-weight polymer of glucose. Curdlan consists of β-(1,3)-linked glucose residues and forms elastic gels upon heating in aqueous suspension. It was reported to be produced by Alcaligenes faecalis var. myxogenes. Subsequently, the taxonomy of this non-pathogenic curdlan-producing bacterium has been reclassified as Agrobacterium species.
Extracellular polymeric substances (EPSs) are natural polymers of high molecular weight secreted by microorganisms into their environment. EPSs establish the functional and structural integrity of biofilms, and are considered the fundamental component that determines the physicochemical properties of a biofilm. EPS in the matrix of biofilms provides compositional support and protection of microbial communities from the harsh environments. Components of EPS can be of different classes of polysaccharides, lipids, nucleic acids, proteins, lipopolysaccharides, and minerals.
Brain heart infusion (BHI) is a growth medium for growing microorganisms. It is a nutrient-rich medium, and can therefore be used to culture a variety of fastidious organisms. In particular, it has been used to culture streptococci, pneumococci and meningococci, which can be otherwise challenging to grow. BHI is made by combining an infusion from boiled bovine or porcine heart and brain with a variety of other nutrients. BHI broth is often used in food safety, water safety, and antibiotic sensitivity tests.
Locust bean gum is a galactomannan vegetable gum extracted from the seeds of the carob tree and used as a thickening agent in food technology.
Levan is a naturally occurring fructan present in many plants and microorganisms. This polymer is made up of fructose, a monosaccharide sugar, connected by 2,6 beta glycosidic linkages. Levan can have both branched and linear structures of relatively low molecular weight. Branched levan forms a very small, sphere-like structure with basal chains 9 units long. The 2,1 branching allows methyl ethers to form and create a spherical shape. The ends of levan also tend to contain a glucosyl residue. Branched levan tends to be more stable than the linear structure. However, the amount of branching and length of polymerization tends to vary among different species. The shortest levan is 6-kestose, a chain of two fructose molecules and a terminal glucose molecule.
Gums and Stabilisers for the Food Industry is a biennial conference held in Wrexham, North Wales, since 1981, on the application of hydrocolloids in the food industry. Presentations at the conference cover recent advances in the structure, function and applications of gums and stabilisers, how these materials are used in industrial processes, and also educational material on the subject. The proceedings of each conference have been published, with the most recent published by the Royal Society of Chemistry. The conference series is organized by the Food Hydrocolloids Trust.
A stabiliser is an additive to food which helps to preserve its structure. Typical uses include preventing oil-water emulsions from separating in products such as salad dressing; preventing ice crystals from forming in frozen food such as ice cream; and preventing fruit from settling in products such as jam, yogurt and jellies. Some of these food additives may promote the growth of specific microorganisms in the gastrointestinal tract that can ferment them. The following hydrocolloids are the most common ones used as stabilisers:
Agaropectin is one of the two main components of agar.
Bacterial cellulose is an organic compound with the formula (C
6H
10O
5)
n produced by certain types of bacteria. While cellulose is a basic structural material of most plants, it is also produced by bacteria, principally of the genera Acetobacter, Sarcina ventriculi and Agrobacterium. Bacterial, or microbial, cellulose has different properties from plant cellulose and is characterized by high purity, strength, moldability and increased water holding ability. In natural habitats, the majority of bacteria synthesize extracellular polysaccharides, such as cellulose, which form protective envelopes around the cells. While bacterial cellulose is produced in nature, many methods are currently being investigated to enhance cellulose growth from cultures in laboratories as a large-scale process. By controlling synthesis methods, the resulting microbial cellulose can be tailored to have specific desirable properties. For example, attention has been given to the bacteria Komagataeibacter xylinum due to its cellulose's unique mechanical properties and applications to biotechnology, microbiology, and materials science. Historically, bacterial cellulose has been limited to the manufacture of Nata de coco, a South-East Asian food product. With advances in the ability to synthesize and characterize bacterial cellulose, the material is being used for a wide variety of commercial applications including textiles, cosmetics, and food products, as well as medical applications. Many patents have been issued in microbial cellulose applications and several active areas of research are attempting to better characterize microbial cellulose and utilize it in new areas.
Sphingomonas elodea is a species of bacteria in the genus Sphingomonas.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)