Agarose

Last updated
An agarose gel in a tray
used for gel electrophoresis Two percent Agarose Gel in Borate Buffer cast in a Gel Tray (Front, angled).jpg
An agarose gel in a tray
used for gel electrophoresis

Agarose is a heteropolysaccharide, generally extracted from certain red algae. [1] It is a linear polymer made up of the repeating unit of agarobiose, which is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. [2] [3] Agarose is one of the two principal components of agar, and is purified from agar by removing agar's other component, agaropectin. [4]

Contents

Agarose is frequently used in molecular biology for the separation of large molecules, especially DNA, by electrophoresis. Slabs of agarose gels (usually 0.7 - 2%) for electrophoresis are readily prepared by pouring the warm, liquid solution into a mold. A wide range of different agaroses of varying molecular weights and properties are commercially available for this purpose. Agarose may also be formed into beads and used in a number of chromatographic methods for protein purification.

Structure

The structure of the repeating unit of an agarose polymer. Agarose polymere.svg
The structure of the repeating unit of an agarose polymer.

Agarose is a linear polymer with a molecular weight of about 120,000, consisting of alternating D-galactose and 3,6-anhydro-L-galactopyranose linked by α-(1→3) and β-(1→4) glycosidic bonds. The 3,6-anhydro-L-galactopyranose is an L-galactose with an anhydro bridge between the 3 and 6 positions, although some L-galactose units in the polymer may not contain the bridge. Some D-galactose and L-galactose units can be methylated, and pyruvate and sulfate are also found in small quantities. [5]

Each agarose chain contains ~800 molecules of galactose, and the agarose polymer chains form helical fibers that aggregate into supercoiled structure with a radius of 20-30 nanometer (nm). [6] The fibers are quasi-rigid, and have a wide range of length depending on the agarose concentration. [7] When solidified, the fibers form a three-dimensional mesh of channels of diameter ranging from 50 nm to >200 nm depending on the concentration of agarose used - higher concentrations yield lower average pore diameters. The 3-D structure is held together with hydrogen bonds and can therefore be disrupted by heating back to a liquid state.

Properties

Agarose is available as a white powder which dissolves in near-boiling water, and forms a gel when it cools. Agarose exhibits the phenomenon of thermal hysteresis in its liquid-to-gel transition, i.e. it gels and melts at different temperatures. The gelling and melting temperatures vary depending on the type of agarose. Standard agaroses derived from Gelidium has a gelling temperature of 34–38 °C (93–100 °F) and a melting temperature of 90–95 °C (194–203 °F), while those derived from Gracilaria , due to its higher methoxy substituents, has a gelling temperature of 40–52 °C (104–126 °F) and melting temperature of 85–90 °C (185–194 °F). [8] The melting and gelling temperatures may be dependent on the concentration of the gel, particularly at low gel concentration of less than 1%. The gelling and melting temperatures are therefore given at a specified agarose concentration.

Natural agarose contains uncharged methyl groups and the extent of methylation is directly proportional to the gelling temperature. Synthetic methylation however have the reverse effect, whereby increased methylation lowers the gelling temperature. [9] A variety of chemically modified agaroses with different melting and gelling temperatures are available through chemical modifications.

The agarose in the gel forms a meshwork that contains pores, and the size of the pores depends on the concentration of agarose added. On standing, the agarose gels are prone to syneresis (extrusion of water through the gel surface), but the process is slow enough to not interfere with the use of the gel. [10] [11]

Agarose gel can have high gel strength at low concentration, making it suitable as an anti-convection medium for gel electrophoresis. Agarose gels as dilute as 0.15% can form slabs for gel electrophoresis. [12] The agarose polymer contains charged groups, in particular pyruvate and sulfate. [9] These negatively charged groups can slow down the movement of DNA molecules in a process called electroendosmosis (EEO), and low EEO agarose is therefore generally preferred for use in agarose gel electrophoresis of nucleic acids. Zero EEO agaroses are also available but these may be undesirable for some applications as they may be made by adding positively charged groups that can affect subsequent enzyme reactions. [13] Electroendosmosis is a reason agarose is used preferentially over agar as agaropectin in agar contains a significant amount of negatively charged sulphate and carboxyl groups. The removal of agaropectin in agarose substantially reduces the EEO, as well as reducing the non-specific adsorption of biomolecules to the gel matrix. However, for some applications such as the electrophoresis of serum protein, a high EEO may be desirable, and agaropectin may be added in the gel used. [14]

Low melting and gelling temperature agaroses

The melting and gelling temperatures of agarose can be modified by chemical modifications, most commonly by hydroxyethylation, which reduces the number of intrastrand hydrogen bonds, resulting in lower melting and setting temperatures compared to standard agaroses. [15] The exact temperature is determined by the degree of substitution, and many available low-melting-point (LMP) agaroses can remain fluid at 30–35 °C (86–95 °F) range. This property allows enzymatic manipulations to be carried out directly after the DNA gel electrophoresis by adding slices of melted gel containing DNA fragment of interest to a reaction mixture. The LMP agarose contains fewer of the sulphates that can affect some enzymatic reactions, and is therefore preferably used for some applications.

Hydroxyethylated agarose also has a smaller pore size (~90 nm) than standard agaroses. [16] Hydroxyethylation may reduce the pore size by reducing the packing density of the agarose bundles, therefore LMP gel can also have an effect on the time and separation during electrophoresis. [17] Ultra-low melting or gelling temperature agaroses may gel only at 8–15 °C (46–59 °F).

Applications

An agarose gel with bands of DNA stained with ethidium bromide and visualized under UV light on a UV Transilluminator. AgarosegelUV.jpg
An agarose gel with bands of DNA stained with ethidium bromide and visualized under UV light on a UV Transilluminator.

Agarose is a preferred matrix for work with proteins and nucleic acids as it has a broad range of physical, chemical and thermal stability, and its lower degree of chemical complexity also makes it less likely to interact with biomolecules. Agarose is most commonly used as the medium for analytical scale electrophoretic separation in agarose gel electrophoresis. Gels made from purified agarose have a relatively large pore size, making them useful for separation of large molecules, such as proteins and protein complexes >200 kilodaltons, as well as DNA fragments >100 basepairs. Agarose is also used widely for a number of other applications, for example immunodiffusion and immunoelectrophoresis, as the agarose fibers can function as anchor for immunocomplexes.

Agarose gel electrophoresis

Agarose gel electrophoresis is the routine method for resolving DNA in the laboratory. Agarose gels have lower resolving power for DNA than acrylamide gels, but they have greater range of separation, and are therefore usually used for DNA fragments with lengths of 50–20,000 bp (base pairs), although resolution of over 6 Mb is possible with pulsed field gel electrophoresis (PFGE). [18] It can also be used to separate large protein molecules, and it is the preferred matrix for the gel electrophoresis of particles with effective radii larger than 5-10 nm. [12]

The pore size of the gel affects the size of the DNA that can be sieved. The lower the concentration of the gel, the larger the pore size, and the larger the DNA that can be sieved. However low-concentration gels (0.1 - 0.2%) are fragile and therefore hard to handle, and the electrophoresis of large DNA molecules can take several days. The limit of resolution for standard agarose gel electrophoresis is around 750 kb. [18] This limit can be overcome by PFGE, where alternating orthogonal electric fields are applied to the gel. The DNA fragments reorientate themselves when the applied field switches direction, but larger molecules of DNA take longer to realign themselves when the electric field is altered, while for smaller ones it is quicker, and the DNA can therefore be fractionated according to size.

Agarose gels are cast in a mold, and when set, usually run horizontally submerged in a buffer solution. Tris-acetate-EDTA and Tris-Borate-EDTA buffers are commonly used, but other buffers such as Tris-phosphate, barbituric acid-sodium barbiturate or Tris-barbiturate buffers may be used in other applications. [1] The DNA is normally visualized by staining with ethidium bromide and then viewed under a UV light, but other methods of staining are available, such as SYBR Green, GelRed, methylene blue, and crystal violet. If the separated DNA fragments are needed for further downstream experiment, they can be cut out from the gel in slices for further manipulation.

Agarose-based gel filtration columns used for protein purification on an AKTA FPLC machine. Size Exclusion Chromatography Apparatus.jpg
Agarose-based gel filtration columns used for protein purification on an AKTA FPLC machine.

Protein purification

Agarose gel matrix is often used for protein purification, for example, in column-based preparative scale separation as in gel filtration chromatography, affinity chromatography and ion exchange chromatography. It is however not used as a continuous gel, rather it is formed into porous beads or resins of varying fineness. [19] The beads are highly porous so that protein may flow freely through the beads. These agarose-based beads are generally soft and easily crushed, so they should be used under gravity-flow, low-speed centrifugation, or low-pressure procedures. [20] The strength of the resins can be improved by increased cross-linking and chemical hardening of the agarose resins, however such changes may also result in a lower binding capacity for protein in some separation procedures such as affinity chromatography.

Agarose is a useful material for chromatography because it does not absorb biomolecules to any significant extent, has good flow properties, and can tolerate extremes of pH and ionic strength as well as high concentration of denaturants such as 8M urea or 6M guanidine HCl. [21] Examples of agarose-based matrix for gel filtration chromatography are Sepharose and WorkBeads 40 SEC (cross-linked beaded agarose), Praesto and Superose (highly cross-linked beaded agaroses), and Superdex (dextran covalently linked to agarose).

For affinity chromatography, beaded agarose is the most commonly used matrix resin for the attachment of the ligands that bind protein. [22] The ligands are linked covalently through a spacer to activated hydroxyl groups of agarose bead polymer. Proteins of interest can then be selectively bound to the ligands to separate them from other proteins, after which it can be eluted. The agarose beads used are typically of 4% and 6% densities with a high binding capacity for protein.

Solid culture media

Agarose plate may sometimes be used instead of agar for culturing organisms as agar may contain impurities that can affect the growth of the organism or some downstream procedures such as polymerase chain reaction (PCR). Agarose is also harder than agar and may therefore be preferable where greater gel strength is necessary, and its lower gelling temperature may prevent causing thermal shock to the organism when the cells are suspended in liquid before gelling. It may be used for the culture of strict autotrophic bacteria, plant protoplast, [23] Caenorhabditis elegans , [24] other organisms and various cell lines.

Motility assays

Agarose is sometimes used instead of agar to measure microorganism motility and mobility. Motile species will be able to migrate, albeit slowly, throughout the porous gel and infiltration rates can then be visualized. The gel's porosity is directly related to the concentration of agar or agarose in the medium, so different concentration gels may be used to assess a cell's swimming, swarming, gliding and twitching motility. Under-agarose cell migration assay may be used to measure chemotaxis and chemokinesis. A layer of agarose gel is placed between a cell population and a chemoattractant. As a concentration gradient develops from the diffusion of the chemoattractant into the gel, various cell populations requiring different stimulation levels to migrate can then be visualized over time using microphotography as they tunnel upward through the gel against gravity along the gradient.

See also

Related Research Articles

<span class="mw-page-title-main">Agarose gel electrophoresis</span> Method for separation and analysis of biomolecules using agarose gel

Agarose gel electrophoresis is a method of gel electrophoresis used in biochemistry, molecular biology, genetics, and clinical chemistry to separate a mixed population of macromolecules such as DNA or proteins in a matrix of agarose, one of the two main components of agar. The proteins may be separated by charge and/or size, and the DNA and RNA fragments by length. Biomolecules are separated by applying an electric field to move the charged molecules through an agarose matrix, and the biomolecules are separated by size in the agarose gel matrix.

<span class="mw-page-title-main">Agar</span> Thickening agent used in microbiology and food

Agar, or agar-agar, is a jelly-like substance consisting of polysaccharides obtained from the cell walls of some species of red algae, primarily from "ogonori" (Gracilaria) and "tengusa" (Gelidiaceae). As found in nature, agar is a mixture of two components, the linear polysaccharide agarose and a heterogeneous mixture of smaller molecules called agaropectin. It forms the supporting structure in the cell walls of certain species of algae and is released on boiling. These algae are known as agarophytes, belonging to the Rhodophyta phylum. The processing of food-grade agar removes the agaropectin, and the commercial product is essentially pure agarose.

<span class="mw-page-title-main">Gel electrophoresis</span> Method for separation and analysis of biomolecules

Gel electrophoresis is a method for separation and analysis of biomacromolecules and their fragments, based on their size and charge. It is used in clinical chemistry to separate proteins by charge or size and in biochemistry and molecular biology to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.

<span class="mw-page-title-main">Size-exclusion chromatography</span> Chromatographic method in which dissolved molecules are separated by their size & molecular weight

Size-exclusion chromatography, also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are commonly composed of dextran, agarose, or polyacrylamide polymers. The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers.

<span class="mw-page-title-main">Polyacrylamide gel electrophoresis</span> Analytical technique

Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility. Electrophoretic mobility is a function of the length, conformation, and charge of the molecule. Polyacrylamide gel electrophoresis is a powerful tool used to analyze RNA samples. When polyacrylamide gel is denatured after electrophoresis, it provides information on the sample composition of the RNA species.

<span class="mw-page-title-main">Gel electrophoresis of nucleic acids</span>

Gel electrophoresis of nucleic acids is an analytical technique to separate DNA or RNA fragments by size and reactivity. Nucleic acid molecules are placed on a gel, where an electric field induces the nucleic acids to migrate toward the positively charged anode. The molecules separate as they travel through the gel based on the each molecule's size and shape. Longer molecules move more slowly because they the gel resists their movement more forcefully than it resists shorter molecules. After some time, the electricity is turned off and the positions of the different molecules are analyzed.

Gel permeation chromatography (GPC) is a type of size-exclusion chromatography (SEC), that separates high molecular weight or colloidal analytes on the basis of size or diameter, typically in organic solvents. The technique is often used for the analysis of polymers. As a technique, SEC was first developed in 1955 by Lathe and Ruthven. The term gel permeation chromatography can be traced back to J.C. Moore of the Dow Chemical Company who investigated the technique in 1964. The proprietary column technology was licensed to Waters Corporation, who subsequently commercialized this technology in 1964. GPC systems and consumables are now also available from a number of manufacturers. It is often necessary to separate polymers, both to analyze them as well as to purify the desired product.

<span class="mw-page-title-main">Gel electrophoresis of proteins</span> Technique for separating proteins

Protein electrophoresis is a method for analysing the proteins in a fluid or an extract. The electrophoresis may be performed with a small volume of sample in a number of alternative ways with or without a supporting medium, namely agarose or polyacrylamide. Variants of gel electrophoresis include SDS-PAGE, free-flow electrophoresis, electrofocusing, isotachophoresis, affinity electrophoresis, immunoelectrophoresis, counterelectrophoresis, and capillary electrophoresis. Each variant has many subtypes with individual advantages and limitations. Gel electrophoresis is often performed in combination with electroblotting or immunoblotting to give additional information about a specific protein.

Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.

<span class="mw-page-title-main">Temperature gradient gel electrophoresis</span>

Temperature gradient gel electrophoresis (TGGE) and denaturing gradient gel electrophoresis (DGGE) are forms of electrophoresis which use either a temperature or chemical gradient to denature the sample as it moves across an acrylamide gel. TGGE and DGGE can be applied to nucleic acids such as DNA and RNA, and proteins. TGGE relies on temperature dependent changes in structure to separate nucleic acids. DGGE separates genes of the same size based on their different denaturing ability which is determined by their base pair sequence. DGGE was the original technique, and TGGE a refinement of it.

<span class="mw-page-title-main">Ion chromatography</span> Separates ions and polar molecules

Ion chromatography is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including small inorganic anions, large proteins, small nucleotides, and amino acids. However, ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein.

<span class="mw-page-title-main">Immunoelectrophoresis</span> Biochemical methods of separation and characterization of proteins

Immunoelectrophoresis is a general name for a number of biochemical methods for separation and characterization of proteins based on electrophoresis and reaction with antibodies. All variants of immunoelectrophoresis require immunoglobulins, also known as antibodies, reacting with the proteins to be separated or characterized. The methods were developed and used extensively during the second half of the 20th century. In somewhat chronological order: Immunoelectrophoretic analysis, crossed immunoelectrophoresis, rocket-immunoelectrophoresis, fused rocket immunoelectrophoresis ad modum Svendsen and Harboe, affinity immunoelectrophoresis ad modum Bøg-Hansen.

<span class="mw-page-title-main">Molecular-weight size marker</span> Set of standards

A molecular-weight size marker, also referred to as a protein ladder, DNA ladder, or RNA ladder, is a set of standards that are used to identify the approximate size of a molecule run on a gel during electrophoresis, using the principle that molecular weight is inversely proportional to migration rate through a gel matrix. Therefore, when used in gel electrophoresis, markers effectively provide a logarithmic scale by which to estimate the size of the other fragments.

QPNC-PAGE, or QuantitativePreparativeNativeContinuousPolyacrylamideGel Electrophoresis, is a bioanalytical, one-dimensional, high-resolution and high-precision electrophoresis technique applied in biochemistry and bioinorganic chemistry to separate proteins quantitatively by isoelectric point and by continuous elution from a gel column.

<span class="mw-page-title-main">Diethylaminoethyl cellulose</span>

Diethylaminoethyl cellulose (DEAE-C) is a positively charged resin used in ion-exchange chromatography, a type of column chromatography, for the separation and purification of proteins and nucleic acids. Gel matrix beads are derivatized with diethylaminoethanol (DEAE) and lock negatively charged proteins or nucleic acids into the matrix. The proteins are released from the resin by increasing the salt concentration of the solvent or changing the pH of the solution as to change the charge on the protein.

<span class="mw-page-title-main">Electrophoretic color marker</span>

An electrophoretic color marker is a chemical used to monitor the progress of agarose gel electrophoresis and polyacrylamide gel electrophoresis (PAGE) since DNA, RNA, and most proteins are colourless. The color markers are made up of a mixture of dyes that migrate through the gel matrix alongside the sample of interest. They are typically designed to have different mobilities from the sample components and to generate colored bands that can be used to assess the migration and separation of sample components.

<span class="mw-page-title-main">Affinity electrophoresis</span>

Affinity electrophoresis is a general name for many analytical methods used in biochemistry and biotechnology. Both qualitative and quantitative information may be obtained through affinity electrophoresis. Cross electrophoresis, the first affinity electrophoresis method, was created by Nakamura et al. Enzyme-substrate complexes have been detected using cross electrophoresis. The methods include the so-called electrophoretic mobility shift assay, charge shift electrophoresis and affinity capillary electrophoresis. The methods are based on changes in the electrophoretic pattern of molecules through biospecific interaction or complex formation. The interaction or binding of a molecule, charged or uncharged, will normally change the electrophoretic properties of a molecule. Membrane proteins may be identified by a shift in mobility induced by a charged detergent. Nucleic acids or nucleic acid fragments may be characterized by their affinity to other molecules. The methods have been used for estimation of binding constants, as for instance in lectin affinity electrophoresis or characterization of molecules with specific features like glycan content or ligand binding. For enzymes and other ligand-binding proteins, one-dimensional electrophoresis similar to counter electrophoresis or to "rocket immunoelectrophoresis", affinity electrophoresis may be used as an alternative quantification of the protein. Some of the methods are similar to affinity chromatography by use of immobilized ligands.

<span class="mw-page-title-main">SDD-AGE</span> Method for detecting large protein polymers

In biochemistry and molecular biology, SDD-AGE is short for Semi-Denaturating Detergent Agarose Gel Electrophoresis. This is a method for detecting and characterizing large protein polymers which are stable in 2% SDS at room temperature, unlike most large protein complexes. This method is very useful for studying prions and amyloids, which are characterized by the formation of proteinaceous polymers. Agarose is used for the gel since the SDS-resistant polymers are large and cannot enter a conventional polyacrylamide gel, which has small pores. Agarose on the other hand has large pores, which allows for the separation of polymers.

<span class="mw-page-title-main">Desalting and buffer exchange</span>

Desalting and buffer exchange are methods to separate soluble macromolecules from smaller molecules (desalting) or replace the buffer system used for another one suitable for a downstream application. These methods are based on gel filtration chromatography, also called molecular sieve chromatography, which is a form of size-exclusion chromatography. Desalting and buffer exchange are two of the most common gel filtration chromatography applications, and they can be performed using the same resin.

<span class="mw-page-title-main">SDS-PAGE</span> Biochemical technique

SDS-PAGE is a discontinuous electrophoretic system developed by Ulrich K. Laemmli which is commonly used as a method to separate proteins with molecular masses between 5 and 250 kDa. The combined use of sodium dodecyl sulfate and polyacrylamide gel eliminates the influence of structure and charge, and proteins are separated by differences in their size. At least up to 2012, the publication describing it was the most frequently cited paper by a single author, and the second most cited overall.

References

  1. 1 2 Jeppsson JO, Laurell CB, Franzén B (April 1979). "Agarose gel electrophoresis". Clinical Chemistry. 25 (4): 629–38. doi: 10.1093/clinchem/25.4.629 . PMID   313856.
  2. Akari C (1956). "Structure of the agarose component of agar-agar". Bulletin of the Chemical Society of Japan. 29 (4): 543–544. doi: 10.1246/bcsj.29.543 .
  3. Agar Archived October 16, 2007, at the Wayback Machine at lsbu.ac.uk Water Structure and Science
  4. "Agar". Food and Agricultural Organization of the United Nations.
  5. Armisen R, Galatas F. "Chapter 1 - Production, Properties and Uses of Agar". Fao.org.
  6. Maniatis T, Fritsch EF, Sambrook J (1982). "Chapter 5, protocol 1". Molecular Cloning - A Laboratory Manual. Vol. 1. p. 5.4. ISBN   978-0879691363.
  7. Stephen AM, Phillips GO, eds. (2006). Food Polysaccharides and Their Applications. CRC Press. p. 226. ISBN   978-0824759223.
  8. Workshop on Marine Algae Biotechnology: Summary Report. National Academy Press. 1986. p. 25.
  9. 1 2 "Appendix B: Agarose Physical Chemistry" (PDF). Lonza Group. Archived (PDF) from the original on 2022-10-09.
  10. Hill SE, Ledward DA, Mitchell JR, eds. (1998). Functional Properties of Food Macromolecules. Springer. p. 149. ISBN   978-0-7514-0421-0.
  11. Park H, Park K, Shalaby WS (1993). Biodegradable Hydrogels for Drug Delivery. CRC Press. p. 102. ISBN   978-1566760041.
  12. 1 2 Serwer P (1983). "Agarose gels: Properties and use for electrophoresis". Electrophoresis. 4 (6): 375–382. doi:10.1002/elps.1150040602. S2CID   97819634.
  13. Sambrook J, Russell D. "Chapter 5, protocol 1". Molecular Cloning - A Laboratory Manual. Vol. 1 (3rd ed.). p. 5.7. ISBN   978-0-87969-577-4.
  14. Keren D (26 September 2003). Protein Electrophoresis in Clinical Diagnosis. CRC Press. pp. 7–8. ISBN   978-0340812136.
  15. Maniatis T, Fritsch EF, Sambrook J. "Chapter 5, protocol 6". Molecular Cloning - A Laboratory Manual. Vol. 1. p. 5.29. ISBN   978-0879695774.
  16. Griess, Gary A.; Moreno, Elena T.; Easom, Richard A.; Serwer, Philip (1989). "The sieving of spheres during agarose gel electrophoresis: Quantitation and modeling". Biopolymers. 28 (8). Wiley: 1475–1484. doi:10.1002/bip.360280811. ISSN   0006-3525.
  17. Lee PY, Costumbrado J, Hsu CY, Kim YH (April 2012). "Agarose gel electrophoresis for the separation of DNA fragments". Journal of Visualized Experiments. 62 (62): 3923. doi:10.3791/3923. PMC   4846332 . PMID   22546956.
  18. 1 2 Maniatis T, Fritsch EF, Sambrook J (1982). "Chapter 5, protocol 1". Molecular Cloning - A Laboratory Manual. Vol. 1. p. 5.2–5.3. ISBN   978-0879691363.
  19. Freifelder D (1982). Physical Biochemistry: Applications to Biochemistry and Molecular Biology (2nd ed.). WH Freeman. p. 240. ISBN   978-0716714446.
  20. "Overview of Affinity Purification". Thermo Scientific.
  21. Freifelder D (1982). Physical Biochemistry: Applications to Biochemistry and Molecular Biology (2nd ed.). WH Freeman. p. 258. ISBN   978-0716714446.
  22. Cuatrecasas P, Wilchek M (2004). Lennarz WJ, Lane MD (eds.). Encyclopedia of Biological Chemistry. Vol. 1. Academic Press. p. 52. ISBN   9780124437104.
  23. Bonga JM, von Aderkas P (1992). In Vitro Culture of Trees. Springer. p. 16. ISBN   978-0792315407.
  24. Caldwell GA, Williams SN, Caldwell KA (2006). Integrated Genomics: A Discovery-Based Laboratory Course. Wiley. pp. 94–95. ISBN   978-0470095027.