This article needs additional citations for verification .(March 2021) |
Acronym | FPLC |
---|---|
Classification | Chromatography |
Manufacturers | NGC System (Bio-Rad Laboratories), Arista (Practichem), ÄKTA (Cytiva), Contichrom (ChromaCon), BioSMB (Pall Life Sciences) |
Other techniques | |
Related | High performance liquid chromatography Affinity chromatography Size exclusion chromatography |
Fast protein liquid chromatography (FPLC) is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture have different affinities for two materials, a moving fluid (the mobile phase) and a porous solid (the stationary phase). In FPLC the mobile phase is an aqueous buffer solution. [1] The buffer flow rate is controlled by a positive-displacement pump and is normally kept constant, while the composition of the buffer can be varied by drawing fluids in different proportions from two or more external reservoirs. The stationary phase is a resin composed of beads, usually of cross-linked agarose, packed into a cylindrical glass or plastic column. FPLC resins are available in a wide range of bead sizes and surface ligands depending on the application.
FPLC was developed and marketed in Sweden by Pharmacia in 1982, [2] and was originally called fast performance liquid chromatography to contrast it with high-performance liquid chromatography (HPLC). FPLC is generally applied only to proteins; however, because of the wide choice of resins and buffers it has broad applications. In contrast to HPLC, the buffer pressure used is relatively low, typically less than 5 bar, but the flow rate is relatively high, typically 1–5 ml/min.
FPLC can be readily scaled from analysis of milligrams of mixtures in columns with a total volume of 5 ml or less to industrial production of kilograms of purified protein in columns with volumes of many liters. When used for analysis of mixtures, the eluant is usually collected in fractions of 1–5 ml which can be further analyzed. When used for protein purification there may be only two collection containers: one for the purified product and one for waste. [3]
In a common FPLC strategy, a resin is chosen that the protein of interest will bind to by a charge interaction while in buffer A (the running buffer) but become dissociated and return to solution in buffer B (the elution buffer). A mixture containing one or more proteins of interest is dissolved in 100% buffer A and pumped into the column. The proteins of interest bind to the resin while other components are carried out in the buffer. [4] The total flow rate of the buffer is kept constant; however, the proportion of buffer B (the "elution" buffer) is gradually increased from 0% to 100% according to a programmed change in concentration (the "gradient"). At some point during this process each of the bound proteins dissociates and appears in the eluant. The eluant passes through two detectors which measure salt concentration (by conductivity) and protein concentration (by absorption of ultraviolet light at a wavelength of 280 nm). As each protein is eluted, it appears in the eluant as a "peak" in protein concentration, and can be collected for further use. [5]
A typical laboratory FPLC consist of one or two high-precision pumps, a control unit, a column, a detection system and a fraction collector. Although it is possible to operate the system manually, the components are normally linked to a personal computer or, in older units, a microcontroller.
The majority of systems utilize two two-cylinder piston pumps, one for each buffer, combining the output of both in a mixing chamber. Some simpler systems use a single peristaltic pump which draws both buffers from separate reservoirs through a proportioning valve and mixing chamber. In either case the system allows the fraction of each buffer entering the column to be continuously varied. The flow rate can go from a few milliliters per minute in bench-top systems to liters per minute for industrial scale purifications. The wide flow range makes it suitable both for analytical and preparative chromatography.
The injection loop is a segment of tubing of known volume which is filled with the sample solution before it is injected into the column. Loop volume can range from a few microliters to 50 ml or more.
The injection valve is a motorized valve which links the mixer and sample loop to the column. Typically the valve has three positions for loading the sample loop, for injecting the sample from the loop into the column, and for connecting the pumps directly to the waste line to wash them or change buffer solutions. The injection valve has a sample loading port through which the sample can be loaded into the injection loop, usually from a hypodermic syringe using a Luer-lock connection.
The column is a glass or plastic cylinder packed with beads of resin and filled with buffer solution. It is normally mounted vertically with the buffer flowing downward from top to bottom. A glass frit at the bottom of the column retains the resin beads in the column while allowing the buffer and dissolved proteins to exit.
The eluant from the column passes through one or more flow cells to measure the concentration of protein in the eluant (by UV light absorption at 280 nm). The conductivity cell measures the buffer conductivity, usually in millisiemens/cm, which indicates the concentration of salt in the buffer. A flow cell which measures pH of the buffer is also commonly included. Usually each flow cell is connected to a separate electronics module which provides power and amplifies the signal.
The flow cells are connected to a display and/or recorder. On older systems this was a simple chart recorder, on modern systems a computer with hardware interface and display is used. This permits the experimenter to identify when peaks in protein concentration occur, indicating that specific components of the mixture are being eluted.
The fraction collector is typically a rotating rack that can be filled with test tubes or similar containers. Distribution of the eluate into separate containers are determined by fixed volumes or specific fractions detected at peaks of protein concentration.
Many systems include various optional components. A filter may be added between the mixer and column to minimize clogging. In large FPLC columns the sample may be loaded into the column directly using a small peristaltic pump rather than an injection loop. When the buffer contains dissolved gas, bubbles may form as pressure drops where the buffer exits the column; these bubbles create artifacts if they pass through the flow cells. This may be prevented by degassing the buffers, e.g. with a degasser, or by adding a flow restrictor downstream of the flow cells to maintain a pressure of 1-5 bar in the eluant line.
The columns used in FPLC are large (inner diameters on the order of millimeters) tubes that contain small (micrometer-scale) particles or gel beads as the stationary phase. [6] The chromatographic bed is composed of gel beads inside the column and the sample is introduced into the injector and carried into the column by the flowing solvent. As a result of different components adhering to or diffusing through the gel, the sample mixture gets separated.[ citation needed ]
Columns used with an FPLC can separate macromolecules based on size (size-exclusion chromatography), charge distribution (ion exchange), hydrophobicity, reverse-phase or biorecognition (as with affinity chromatography). [7] For easy use, a wide range of pre-packed columns for techniques such as ion exchange, gel filtration (size exclusion), hydrophobic interaction, and affinity chromatography are available. [8] FPLC differs from HPLC in that the columns used for FPLC can only be used up to maximum pressure of 3-4 MPa (435-580 psi). Thus, if the pressure of HPLC can be limited, each FPLC column may also be used in an HPLC machine.
Combinations of chromatographic methods can be used to purify a target molecule. The purpose of purifying proteins with FPLC is to deliver quantities of the target at sufficient purity in a biologically active state to suit its further use. The quality of the end product varies depending the type and amount of starting material, efficiency of separation, and selectivity of the purification resin. The ultimate goal of a given purification protocol is to deliver the required yield and purity of the target molecule in the quickest, cheapest, and safest way for acceptable results. The range of purity required can be from that required for basic analysis (SDS-PAGE or ELISA, for example), with only bulk impurities removed, to pure enough for structural analysis (NMR or X-ray crystallography), approaching >99% target molecule. Purity required can also mean pure enough that the biological activity of the target is retained. These demands can be used to determine the amount of starting material required to reach the experimental goal. If the starting material is limited and full optimization of purification protocol cannot be performed, then a safe standard protocol that requires a minimum adjustment and optimization steps are expected. This may not be optimal with respect to experimental time, yield, and economy but it will achieve the experimental goal. On the other hand, if the starting material is enough to develop more complete protocol, the amount of work to reach the separation goal depends on the available sample information and target molecule properties. Limits to development of purification protocols many times depends on the source of the substance to be purified, whether from natural sources (harvested tissues or organisms, for example), recombinant sources (such as using prokaryotic or eukaryotic vectors in their respective expression systems), or totally synthetic sources.
No chromatographic techniques provide 100% yield of active material and overall yields depend on the number of steps in the purification protocol. By optimizing each step for the intended purpose and arranging them that minimizes inter step treatments, the number of steps will be minimized.
A typical multistep purification protocol starts with a preliminary capture step which often utilizes ion exchange chromatography (IEC). The media (stationary phase) resin consists of beads, which range in size from being large (good for fast flow rates and little to no sample clarification at the expense of resolution) to small (for best possible resolution with all other factors being equal). Short and wide column geometries are amenable to high flow rates also at the expense of resolution, typically because of lateral diffusion of sample on the column. For techniques such as size exclusion chromatography to be useful, very long, thin columns and minimal sample volumes (maximum 5% of column volume) are required. Hydrophobic interaction chromatography (HIC) can also be used for first and/ or intermediate steps. Selectivity in HIC is independent of running pH and descending salt gradients are used. For HIC, conditioning involves adding ammonium sulfate to the sample to match the buffer A concentration. If HIC is used before IEC, the ionic strength would have to be lowered to match that of buffer A for IEC step by dilution, dialysis or buffer exchange by gel filtration. This is why IEC is usually performed prior to HIC as the high salt elution conditions for IEC are ideal for binding to HIC resins in the next purification step. Polishing is used to achieve the final level of purification required and is commonly performed on a gel filtration column. An extra intermediate purification step can be added or optimization of the different steps is performed for improving purity. This extra step usually involves another round of IEC under completely different conditions.
Although this is an example of a common purification protocol for proteins, the buffer conditions, flow rates, and resins used to achieve final goals can be chosen to cover a broad range of target proteins. This flexibility is imperative for a functional purification system as all proteins behave differently and often deviate from predictions. [9]
Agarose is a heteropolysaccharide, generally extracted from certain red algae. It is a linear polymer made up of the repeating unit of agarobiose, which is a disaccharide made up of D-galactose and 3,6-anhydro-L-galactopyranose. Agarose is one of the two principal components of agar, and is purified from agar by removing agar's other component, agaropectin.
In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.
High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify specific components in mixtures. The mixtures can originate from food, chemicals, pharmaceuticals, biological, environmental and agriculture, etc., which have been dissolved into liquid solutions.
A polyhistidine-tag, best known by the trademarked name His-tag, is an amino acid motif in proteins that typically consists of at least six histidine (His) residues, often at the N- or C-terminus of the protein. It is also known as a hexa histidine-tag, 6xHis-tag, or His6 tag. The tag was invented by Roche, although the use of histidines and its vectors are distributed by Qiagen. Various purification kits for histidine-tagged proteins are commercially available from multiple companies.
Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the specification of the function, structure and interactions of the protein of interest. The purification process may separate the protein and non-protein parts of the mixture, and finally separate the desired protein from all other proteins. Ideally, to study a protein of interest, it must be separated from other components of the cell so that contaminants will not interfere in the examination of the protein of interest's structure and function. Separation of one protein from all others is typically the most laborious aspect of protein purification. Separation steps usually exploit differences in protein size, physico-chemical properties, binding affinity and biological activity. The pure result may be termed protein isolate.
The first isolation of deoxyribonucleic acid (DNA) was done in 1869 by Friedrich Miescher. DNA extraction is the process of isolating DNA from the cells of an organism isolated from a sample, typically a biological sample such as blood, saliva, or tissue. It involves breaking open the cells, removing proteins and other contaminants, and purifying the DNA so that it is free of other cellular components. The purified DNA can then be used for downstream applications such as PCR, sequencing, or cloning. Currently, it is a routine procedure in molecular biology or forensic analyses.
Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.
Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential absorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column.
Ion chromatography is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including small inorganic anions, large proteins, small nucleotides, and amino acids. However, ion chromatography must be done in conditions that are one pH unit away from the isoelectric point of a protein.
Protein methods are the techniques used to study proteins. There are experimental methods for studying proteins. Computational methods typically use computer programs to analyze proteins. However, many experimental methods require computational analysis of the raw data.
Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in recent years are done using the reversed phase mode. In the reversed phase mode, the sample components are retained in the system the more hydrophobic they are.
Chromatography is a physical method of separation that distributes the components you want to separate between two phases, one stationary, the other moving in a definite direction. Cold ethanol precipitation, developed by Cohn in 1946, manipulates pH, ionic strength, ethanol concentration and temperature to precipitate different protein fractions from plasma. Chromatographic techniques utilise ion exchange, gel filtration and affinity resins to separate proteins. Since the 1980s it has emerged as an effective method of purifying blood components for therapeutic use.
Multicolumn countercurrent solvent gradient purification (MCSGP) is a form of chromatography that is used to separate or purify biomolecules from complex mixtures. It was developed at the Swiss Federal Institute of Technology Zürich by Aumann and Morbidelli. The process consists of two to six chromatographic columns which are connected to one another in such a way that as the mixture moves through the columns the compound is purified into several fractions.
Displacement chromatography is a chromatography technique in which a sample is placed onto the head of the column and is then displaced by a solute that is more strongly sorbed than the components of the original mixture. The result is that the components are resolved into consecutive "rectangular" zones of highly concentrated pure substances rather than solvent-separated "peaks". It is primarily a preparative technique; higher product concentration, higher purity, and increased throughput may be obtained compared to other modes of chromatography.
Blood plasma fractionation are the general processes separating the various components of blood plasma, which in turn is a component of blood obtained through blood fractionation. Plasma-derived immunoglobulins are giving a new narrative to healthcare across a wide range of autoimmune inflammatory diseases.
A monolithic HPLC column, or monolithic column, is a column used in high-performance liquid chromatography (HPLC). The internal structure of the monolithic column is created in such a way that many channels form inside the column. The material inside the column which separates the channels can be porous and functionalized. In contrast, most HPLC configurations use particulate packed columns; in these configurations, tiny beads of an inert substance, typically a modified silica, are used inside the column. Monolithic columns can be broken down into two categories, silica-based and polymer-based monoliths. Silica-based monoliths are known for their efficiency in separating smaller molecules while, polymer-based are known for separating large protein molecules.
Chromatofocusing is a protein-separation technique that allows resolution of single proteins and other ampholytes from a complex mixture according to differences in their isoelectric point. Chromatofocusing uses ion exchange resins and is typically performed on fast protein liquid chromatography (FPLC) or similar equipment capable of producing continuous buffer gradients, though this is not a requirement. In contrast to typical ion exchange chromatography, where bound molecules are eluted from the resin by increasing the ionic strength of the buffer environment, chromatofocusing elutes bound species by altering the pH of the buffer. This changes the net surface charge of bound molecules, altering their avidity for the resin. As the changing pH of the buffer system traverses the pI of a given molecule, that molecule will elute from the resin as it will no longer possess a net surface charge. Chromatofocusing is a powerful purification technique with respect to proteins as it can resolve very similar species differing by less than 0.05 pH units that may not separate well, or at all, using traditional ion exchange strategies. A major drawback to this technique is that some proteins will aggregate when they are present at relatively high concentrations and carry no net surface charge. This can cause blockage of the resin, which is highly problematic when using sealed columns of ion exchange resin on FPLC equipment, resulting in pressure buildup and possible equipment failure. Apparent aggregation issues can sometimes be overcome by limiting the sample concentration and use of buffer additives that deter aggregate formation.
Desalting and buffer exchange are methods to separate soluble macromolecules from smaller molecules (desalting) or replace the buffer system used for another one suitable for a downstream application. These methods are based on gel filtration chromatography, also called molecular sieve chromatography, which is a form of size-exclusion chromatography. Desalting and buffer exchange are two of the most common gel filtration chromatography applications, and they can be performed using the same resin.
Anion-exchange chromatography is a process that separates substances based on their charges using an ion-exchange resin containing positively charged groups, such as diethyl-aminoethyl groups (DEAE). In solution, the resin is coated with positively charged counter-ions (cations). Anion exchange resins will bind to negatively charged molecules, displacing the counter-ion. Anion exchange chromatography is commonly used to purify proteins, amino acids, sugars/carbohydrates and other acidic substances with a negative charge at higher pH levels. The tightness of the binding between the substance and the resin is based on the strength of the negative charge of the substance.
Dye-ligand affinity chromatography is one of the Affinity chromatography techniques used for protein purification of a complex mixture. Like general chromatography, but using dyes to apply on a support matrix of a column as the stationary phase that will allow a range of proteins with similar active sites to bind to, refers to as pseudo-affinity. Synthetic dyes are used to mimic substrates or cofactors binding to the active sites of proteins which can be further enhanced to target more specific proteins. Follow with washing, the process of removing other non-target molecules, then eluting out target proteins out by changing pH or manipulate the salt concentration. The column can be reused many times due to the stability of immobilized dyes. It can carry out in a conventional way by using as a packed column, or in high-performance liquid chromatography (HPLC) column.
Example FPLC risk assessment (Leeper Group, University of Cambridge)