Biological distance analysis

Last updated
Biological distances among human skeletal remains buried in flexed and extended positions at the ancient Greek colony of Chersonesos (5th to 4th century BC), estimated with Gower coefficients based on craniodental morphology. Biological distances at the ancient Greek colony of Chersonesos.png
Biological distances among human skeletal remains buried in flexed and extended positions at the ancient Greek colony of Chersonesos (5th to 4th century BC), estimated with Gower coefficients based on craniodental morphology.

Biological distance analysis (also known as biodistance analysis) is a methodological approach used primarily in biological anthropology, bioarchaeology, and forensic anthropology to infer genetic similarity or difference among deceased humans based on skeletal traits. [1] [2] [3] [4] [5] [6] [7] It is commonly used when ancient DNA (aDNA) is poorly preserved or when destructive sampling is not feasible for ethical or curatorial reasons. [7] Biodistance studies contribute to our understanding of phylogeny, migration, kinship, and ancestry. [4]

Contents

Historical background

The study of skeletal morphological variation to identify group relationships has a long history, dating back to the 18th century. [4] Early work focused primarily on categorizing global human variation based on cranial anatomy using racial typology. In the 1970s, influenced by the New Archaeology movement, biodistance studies were repurposed to focus on reconstructing population structure and history within archaeological contexts. Modern biodistance research rejects typological thinking in favor of emphasizing within-population variability. [8] Recent methodological advances in computing, statistics, and 3D scanning have further refined these analyses by enabling more accurate assessments of multivariate variation within a population and quantitative genetics framework. [7] In the 21st century, the field has increasingly integrated genetic data, including mitochondrial DNA, Y-chromosome markers, and autosomal DNA sequences, to complement traditional morphological approaches.

Data and methods

The method is closely related to archaeogenetics but differs in that it uses skeletal morphological features rather than molecular data. [1] Cranial and dental traits are typically favored because they are highly heritable and shaped primarily by neutral evolution. [5] The four most widely used data types are craniometrics, odontometrics, cranial nonmetric traits, and dental nonmetric traits collected via the Arizona State University Dental Anthropology System (ASUDAS). [4] [5] The rationale for using these traits as proxies for genetic relatedness stems from heritability studies. [5] A study published in 2023 found that ASUDAS dental nonmetric traits are among the most informative morphological markers for biodistance analysis, significantly outperforming other commonly used data types. [9]

Biodistance analyses have been used to assess genetic relationships both between individuals and among populations, with applications ranging from local studies within archaeological sites to broad comparisons across continents. [3] The degree of similarity or dissimilarity is typically quantified using mathematical distance functions, such as the Mahalanobis distance, Smith's Mean Measure of Divergence, and the Gower distance. For visualization, biodistance studies often employ ordination techniques, such as multidimensional scaling (MDS), as well as hierarchical clustering methods like the unweighted pair group method with arithmetic mean (UPGMA). [7]

Applications

Bioarchaeology

In bioarchaeology, biological distance analysis is used to study kinship, migration, post-marital residence patterns, and population structure in ancient societies. Some examples are listed below:

Forensic anthropology

In forensic contexts, biodistance analysis can support the identification of unknown individuals by estimating ancestry and assessing familial relationships. Some examples are listed below:

Paleoanthropology

In paleoanthropology, biodistance data can help elucidate hominin phylogeny, population dispersals, and past admixture events. Some examples are listed below:

See also

References

  1. 1 2 Buikstra, Jane E.; Frankenberg, Susan R.; Konigsberg, Lyle W. (1990). "Skeletal biological distance studies in American Physical Anthropology: Recent trends". American Journal of Physical Anthropology. 82 (1): 1–7. Bibcode:1990AJPA...82....1B. doi:10.1002/ajpa.1330820102. ISSN   1096-8644. PMID   2190472.
  2. Larsen, Clark Spencer (2015-03-30). Bioarchaeology: Interpreting Behavior from the Human Skeleton (2 ed.). Cambridge University Press. doi:10.1017/cbo9781139020398.011. ISBN   978-0-521-83869-6.
  3. 1 2 Pietrusewsky, Michael (2014), "Biological Distance in Bioarchaeology and Human Osteology", Encyclopedia of Global Archaeology, Springer, New York, NY, pp. 889–902, doi:10.1007/978-1-4419-0465-2_146, ISBN   978-1-4419-0465-2 , retrieved 2025-07-22
  4. 1 2 3 4 Pilloud, Marin A.; Hefner, Joseph T., eds. (2016). Biological distance analysis: forensic and bioarchaeological perspectives. London, United Kingdom ; San Diego, CA, USA: Academic Press is an imprint of Elsevier. ISBN   978-0-12-801966-5.
  5. 1 2 3 4 Stojanowski, Christopher M.; Schillaci, Michael A. (2006). "Phenotypic approaches for understanding patterns of intracemetery biological variation". American Journal of Physical Anthropology. 131 (S43): 49–88. Bibcode:2006AJPA..131S..49S. doi:10.1002/ajpa.20517. ISSN   1096-8644. PMID   17103428.
  6. Stojanowski, Christopher M. (2018), "Biodistance", The International Encyclopedia of Biological Anthropology, John Wiley & Sons, Ltd, pp. 1–3, doi:10.1002/9781118584538.ieba0054, ISBN   978-1-118-58453-8 , retrieved 2025-07-22
  7. 1 2 3 4 Rathmann, Hannes (2024-01-01), "Biodistance Analysis", in Nikita, Efthymia; Rehren, Thilo (eds.), Encyclopedia of Archaeology (Second Edition) (Second Edition), Oxford: Academic Press, pp. 882–891, doi:10.1016/b978-0-323-90799-6.00005-7, ISBN   978-0-323-91856-5 , retrieved 2025-07-22
  8. Stojanowski, Christopher M. (2019), Buikstra, Jane E. (ed.), "Ancient Migrations: Biodistance, Genetics, and the Persistence of Typological Thinking", Bioarchaeologists Speak Out: Deep Time Perspectives on Contemporary Issues, Bioarchaeology and Social Theory, Cham: Springer International Publishing, pp. 181–200, doi:10.1007/978-3-319-93012-1_8, ISBN   978-3-319-93012-1 , retrieved 2025-07-22
  9. Rathmann, Hannes; Perretti, Silvia; Porcu, Valentina; Hanihara, Tsunehiko; Scott, G Richard; Irish, Joel D; Reyes-Centeno, Hugo; Ghirotto, Silvia; Harvati, Katerina (2023-07-01). "Inferring human neutral genetic variation from craniodental phenotypes". PNAS Nexus. 2 (7): pgad217. doi:10.1093/pnasnexus/pgad217. ISSN   2752-6542. PMC   10338903 . PMID   37457893.
  10. Scherer, Andrew K. (2007). "Population structure of the classic period Maya". American Journal of Physical Anthropology. 132 (3): 367–380. Bibcode:2007AJPA..132..367S. doi:10.1002/ajpa.20535. ISSN   1096-8644. PMID   17205548.
  11. Rathmann, Hannes; Stoyanov, Roman; Posamentir, Richard (2022). "Comparing individuals buried in flexed and extended positions at the Greek colony of Chersonesos (Crimea) using cranial metric, dental metric, and dental nonmetric traits". International Journal of Osteoarchaeology. 32 (1): 49–63. doi:10.1002/oa.3043. ISSN   1099-1212.
  12. Piccirilli, Erica; Sorrentino, Rita; Lugli, Federico; Bortolini, Eugenio; Silvestrini, Sara; Cavazzuti, Claudio; Conti, Sara; Czifra, Szabolcs; Gyenesei, Katalin; Köhler, Kitti; Tankó, Károly; Vazzana, Antonino; Jerem, Erzsébet; Cipriani, Anna; Gottarelli, Antonio (2023-10-18). "New insights on Celtic migration in Hungary and Italy through the analysis of non-metric dental traits". PLOS ONE. 18 (10): e0293090. Bibcode:2023PLoSO..1893090P. doi: 10.1371/journal.pone.0293090 . ISSN   1932-6203. PMC   10584115 . PMID   37851635.
  13. Ousley, Stephen D.; Jantz, Richard L. (2012), "Fordisc 3 and Statistical Methods for Estimating Sex and Ancestry", A Companion to Forensic Anthropology, John Wiley & Sons, Ltd, pp. 311–329, doi:10.1002/9781118255377.ch15, ISBN   978-1-118-25537-7 , retrieved 2025-07-22
  14. Pilloud, Marin A.; Hefner, Joseph T.; Hanihara, Tsunehiko; Hayashi, Atsuko (2014). "The Use of Tooth Crown Measurements in the Assessment of Ancestry". Journal of Forensic Sciences. 59 (6): 1493–1501. doi:10.1111/1556-4029.12540. ISSN   1556-4029. PMID   25060236.
  15. Scott, G. Richard; Pilloud, Marin A.; Navega, David; Coelho, João d'Oliveira; Cunha, Eugénia; Irish, Joel D. (2018-01-19). "rASUDAS: A New Web-Based Application for Estimating Ancestry from Tooth Morphology". Forensic Anthropology. 1 (1): 18–31. doi:10.5744/fa.2018.0003. ISSN   2573-5039.
  16. Dembo, Mana; Matzke, Nicholas J.; Mooers, Arne Ø.; Collard, Mark (2015-08-07). "Bayesian analysis of a morphological supermatrix sheds light on controversial fossil hominin relationships". Proceedings of the Royal Society B: Biological Sciences. 282 (1812): 20150943. doi:10.1098/rspb.2015.0943. PMC   4528516 . PMID   26202999.
  17. Irish, Joel D.; Bailey, Shara E.; Guatelli-Steinberg, Debbie; Delezene, Lucas K.; Berger, Lee R. (2018-09-01). "Ancient teeth, phenetic affinities, and African hominins: Another look at where Homo naledi fits in". Journal of Human Evolution. 122: 108–123. Bibcode:2018JHumE.122..108I. doi:10.1016/j.jhevol.2018.05.007. ISSN   0047-2484. PMID   29887210.
  18. Rathmann, Hannes; Vizzari, Maria T.; Beier, Judith; Bailey, Shara E.; Ghirotto, Silvia; Harvati, Katerina (2024-08-16). "Human population dynamics in Upper Paleolithic Europe inferred from fossil dental phenotypes". Science Advances. 10 (33): eadn8129. Bibcode:2024SciA...10N8129R. doi:10.1126/sciadv.adn8129. PMC   11328903 . PMID   39151011.