Biotelemetry

Last updated

Biotelemetry (or medical telemetry) involves the application of telemetry in biology, medicine, and other health care to remotely monitor various vital signs of ambulatory patients. [1]

Contents

Application

The most common usage for biotelemetry is in dedicated cardiac care telemetry units or step-down units in hospitals. [2] Although virtually any physiological signal could be transmitted, application is typically limited to cardiac monitoring and SpO2.

Biotelemetry is increasingly being used to understand animals and wildlife by remotely measuring physiology, behaviour and energetic status. [3] It can be used to understand the way that animals migrate, and also the environment that they are experiencing by measuring the abiotic variables, and how it is affecting their physiological status by measuring biotic variables such as heart rate and temperature. [4] Telemetry systems can either be attached externally to animals, or placed internally, with the types of transmission for the devices dependent on the environment that the animal moves in. [4] For example, to study the movement of swimming animals signals using radio transmission or ultrasonic transmission are often used but land based or flying animals can be tracked with GPS and satellite transmissions. [4]

Components of a biotelemetry system

A typical biotelemetry system comprises:

History

Some of the first uses of biotelemetry systems date to the early space race, where physiological signals obtained from animals or human passengers were transmitted back to Earth for analysis (the name of the medical device manufacturer Spacelabs Healthcare is a reflection of their start in 1958 developing biotelemetry systems for the early U.S. space program).

Animal biotelemetry has been used since at least the 1980s. [6] Animal biotelemetry has now advanced to not only understand the physiology and movement of free ranging animals, but also how different animals interact, for example, between predators and prey. [7]

Because of the crowding of the radio spectrum due to the recent introduction of digital television in the United States and many other countries, the Federal Communications Commission (FCC) as well as similar agencies elsewhere have recently[ when? ] begun to allocate dedicated frequency bands for exclusive biotelemetry usage, for example, the Wireless Medical Telemetry Service (WMTS). The FCC has designated the American Society for Healthcare Engineering of the American Hospital Association (ASHE/AHA) as the frequency coordinator for the WMTS.

In addition, there are many products that utilize commonly available standard radio devices such as Bluetooth and IEEE 802.11.

See also

Related Research Articles

<span class="mw-page-title-main">Telemetry</span> Data and measurements transferred from a remote location to receiving equipment for monitoring

Telemetry is the in situ collection of measurements or other data at remote points and their automatic transmission to receiving equipment (telecommunication) for monitoring. The word is derived from the Greek roots tele, 'remote', and metron, 'measure'. Systems that need external instructions and data to operate require the counterpart of telemetry: telecommand.

<span class="mw-page-title-main">Ultra high frequency</span> Electromagnetic spectrum 300–3000 MHz

Ultra high frequency (UHF) is the ITU designation for radio frequencies in the range between 300 megahertz (MHz) and 3 gigahertz (GHz), also known as the decimetre band as the wavelengths range from one meter to one tenth of a meter. Radio waves with frequencies above the UHF band fall into the super-high frequency (SHF) or microwave frequency range. Lower frequency signals fall into the VHF or lower bands. UHF radio waves propagate mainly by line of sight; they are blocked by hills and large buildings although the transmission through building walls is strong enough for indoor reception. They are used for television broadcasting, cell phones, satellite communication including GPS, personal radio services including Wi-Fi and Bluetooth, walkie-talkies, cordless phones, satellite phones, and numerous other applications.

Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precise locating, and tracking. UWB support started to appear in high-end smartphones in 2019.

<span class="mw-page-title-main">Power-line communication</span> Type of network

Power-line communication, abbreviated as PLC, carries data on a conductor that is also used simultaneously for AC electric power transmission or electric power distribution to consumers.

A cognitive radio (CR) is a radio that can be programmed and configured dynamically to use the best wireless channels in its vicinity to avoid user interference and congestion. Such a radio automatically detects available channels in wireless spectrum, then accordingly changes its transmission or reception parameters to allow more concurrent wireless communications in a given spectrum band at one location. This process is a form of dynamic spectrum management.

Brain implants, often referred to as neural implants, are technological devices that connect directly to a biological subject's brain – usually placed on the surface of the brain, or attached to the brain's cortex. A common purpose of modern brain implants and the focus of much current research is establishing a biomedical prosthesis circumventing areas in the brain that have become dysfunctional after a stroke or other head injuries. This includes sensory substitution, e.g., in vision. Other brain implants are used in animal experiments simply to record brain activity for scientific reasons. Some brain implants involve creating interfaces between neural systems and computer chips. This work is part of a wider research field called brain–computer interfaces.

<span class="mw-page-title-main">Animal migration tracking</span> Used to study animals behavior in the wild

Animal migration tracking is used in wildlife biology, conservation biology, ecology, and wildlife management to study animals' behavior in the wild. One of the first techniques was bird banding, placing passive ID tags on birds legs, to identify the bird in a future catch-and-release. Radio tracking involves attaching a small radio transmitter to the animal and following the signal with a RDF receiver. Sophisticated modern techniques use satellites to track tagged animals, and GPS tags which keep a log of the animal's location. With the Emergence of IoT the ability to make devices specific to the species or what is to be tracked is possible. One of the many goals of animal migration research has been to determine where the animals are going; however, researchers also want to know why they are going "there". Researchers not only look at the animals' migration but also what is between the migration endpoints to determine if a species is moving to new locations based on food density, a change in water temperature, or other stimulus, and the animal's ability to adapt to these changes. Migration tracking is a vital tool in efforts to control the impact of human civilization on populations of wild animals, and prevent or mitigate the ongoing extinction of endangered species.

<span class="mw-page-title-main">MIMO</span> Use of multiple antennas in radio

In radio, multiple-input and multiple-output (MIMO) is a method for multiplying the capacity of a radio link using multiple transmission and receiving antennas to exploit multipath propagation. MIMO has become an essential element of wireless communication standards including IEEE 802.11n, IEEE 802.11ac, HSPA+ (3G), WiMAX, and Long Term Evolution (LTE). More recently, MIMO has been applied to power-line communication for three-wire installations as part of the ITU G.hn standard and of the HomePlug AV2 specification.

<span class="mw-page-title-main">Cardiac monitoring</span>

Cardiac monitoring generally refers to continuous or intermittent monitoring of heart activity to assess a patient's condition relative to their cardiac rhythm. Cardiac monitoring is usually carried out using electrocardiography, which is a noninvasive process that records the heart's electrical activity and displays it in an electrocardiogram. It is different from hemodynamic monitoring, which monitors the pressure and flow of blood within the cardiovascular system. The two may be performed simultaneously on critical heart patients. Cardiac monitoring for ambulatory patients is known as ambulatory electrocardiography and uses a small, wearable device, such as a Holter monitor, wireless ambulatory ECG, or an implantable loop recorder. Data from a cardiac monitor can be transmitted to a distant monitoring station in a process known as telemetry or biotelemetry.

<span class="mw-page-title-main">Radio</span> Technology of using radio waves to carry information

Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 3,000 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by another antenna connected to a radio receiver. Radio is widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing, and other applications.

Wireless Medical Telemetry Service (WMTS) is a wireless service specifically defined in the United States by the Federal Communications Commission (FCC) for transmission of data related to a patient's health (biotelemetry). It was created in 2000 because of interference issues due to establishment of digital television. The bands defined are 608-614 MHz, 1395-1400 MHz and 1427-1432 MHz. Devices using these bands are typically proprietary. Further, the use of these bands has not been internationally agreed to, so many times devices cannot be marketed or used freely in countries other than the United States.

<span class="mw-page-title-main">RF module</span> Electronic device to transmit and receive RF signals

An RF module is a (usually) small electronic device used to transmit and/or receive radio signals between two devices. In an embedded system it is often desirable to communicate with another device wirelessly. This wireless communication may be accomplished through optical communication or through radio-frequency (RF) communication. For many applications, the medium of choice is RF since it does not require line of sight. RF communications incorporate a transmitter and a receiver. They are of various types and ranges. Some can transmit up to 500 feet. RF modules are typically fabricated using RF CMOS technology.

<span class="mw-page-title-main">Monitoring (medicine)</span> Observation of a disease, condition or one or several medical parameters over time

In medicine, monitoring is the observation of a disease, condition or one or several medical parameters over time.

<span class="mw-page-title-main">Body area network</span> Small-scale computer network to connect devices around a human body, typically wearables

A body area network (BAN), also referred to as a wireless body area network (WBAN) or a body sensor network (BSN) or a medical body area network (MBAN), is a wireless network of wearable computing devices. BAN devices may be embedded inside the body as implants or pills, may be surface-mounted on the body in a fixed position, or may be accompanied devices which humans can carry in different positions, such as in clothes pockets, by hand, or in various bags. While there is a trend toward the miniaturization of devices, in particular body area networks which consist of several miniaturized body sensor units (BSUs) together with a single body central unit (BCU), larger decimeter sized smart devices still play an important role in terms of acting as a data hub or data gateway and providing a user interface to view and manage BAN applications, in-situ. The development of WBAN technology started around 1995 around the idea of using wireless personal area network (WPAN) technologies to implement communications on, near, and around the human body. About six years later, the term "BAN" came to refer to systems where communication is entirely within, on, and in the immediate proximity of a human body. A WBAN system can use WPAN wireless technologies as gateways to reach longer ranges. Through gateway devices, it is possible to connect the wearable devices on the human body to the internet. This way, medical professionals can access patient data online using the internet independent of the patient location.

<span class="mw-page-title-main">Steven J. Cooke</span> Canadian biologist

Steven J. Cooke is a Canadian biologist specializing in ecology and conservation physiology of fish. He is best known for his integrative work on fish physiology, behaviour, ecology, and human-dimensions to understand and solve complex environmental problems. He currently is a Canada Research Professor in Environmental Science and Biology at Carleton University and the Editor-in-Chief of the scientific journal Conservation Physiology.

The history of wildlife tracking technology involves the evolution of technologies that have been used to monitor, track, and locate many different types of wildlife. Many individuals have an interest in tracking wildlife, including biologists, scientific researchers, and conservationists. Biotelemetry is "the instrumental technique for gaining and transmitting information from a living organism and its environment to a remote observer".

<span class="mw-page-title-main">Wildlife radio telemetry</span> Tool to track the movement and behavior of animals

Wildlife radio telemetry is a tool used to track the movement and behavior of animals. This technique uses the transmission of radio signals to locate a transmitter attached to the animal of interest. It is often used to obtain location data on the animal's preferred habitat, home range, and to understand population dynamics. The different types of radio telemetry techniques include very high frequency (VHF) transmitters, global positioning system (GPS) tracking, and satellite tracking. Recent advances in technology have improved radio telemetry techniques by increasing the efficacy of data collection. However, studies involving radio telemetry should be reviewed in order to determine if newer techniques, such as collars that transmit the location to the operator via satellites, are actually required to accomplish the goals of the study.

Bioinstrumentation or Biomedical Instrumentation is an application of biomedical engineering, which focuses on development of devices and mechanics used to measure, evaluate, and treat biological systems. The goal of biomedical instrumentation focuses on the use of multiple sensors to monitor physiological characteristics of a human or animal for diagnostic and disease treatment purposes. Such instrumentation originated as a necessity to constantly monitor vital signs of Astronauts during NASA's Mercury, Gemini, and Apollo missions.

<span class="mw-page-title-main">Konstantina Nikita</span> Greek engineer

Konstantina "Nantia" Nikita is a Greek electrical and computer engineer and a professor at the School of Electrical and Computer Engineering at the National Technical University of Athens (NTUA), Greece. She is director of the Mobile Radiocommunications Lab and founder and director of the Biomedical Simulations and Imaging Lab, NTUA. Since 2015, she has been an Irene McCulloch Distinguished Adjunct Professor of Biomedical Engineering and Medicine at Keck School of Medicine and Viterbi School of Engineering, University of Southern California.

<span class="mw-page-title-main">John L. Volakis</span> American engineer, educator and writer

John L. Volakis is an American engineer, educator and writer. He is the Dean of the College of Engineering and Computing at Florida International University (FIU). He was born in Chios, Greece on May 13, 1956, and immigrated to the United States in 1973. He is an IEEE, ACES, AAAS and NAI Fellow and a recipient of the URSI Gold Medal. He served as the IEEE Antennas and Propagation Society President (2004), and as chair and Vice Chair of the International Radio Science Union (URSI), Commission B (2017-2023).

References

  1. Singh, K. "Biotelemetry: Could technological developments assist healthcare in rural India" (PDF).
  2. Kiourti, Asimina; Nikita, Konstantina (2017). "A review of in-body biotelemetry devices: Implantables, ingestibles, and injectables". IEEE Transactions on Biomedical Engineering. 64 (7): 1422–1430. doi:10.1109/TBME.2017.2668612. PMID   28212074. S2CID   34814036.
  3. Cooke, Steven J.; Hinch, Scott G.; Wikelski, Martin; Andrews, Russel D.; Kuchel, Louise J.; Wolcott, Thomas G.; Butler, Patrick J. (2004-06-01). "Biotelemetry: a mechanistic approach to ecology". Trends in Ecology & Evolution. 19 (6): 334–343. doi:10.1016/j.tree.2004.04.003. ISSN   0169-5347. PMID   16701280. S2CID   17085487.
  4. 1 2 3 "The Use of Biotelemetry in the Study of Animal Migration | Learn Science at Scitable". www.nature.com. Retrieved 2019-11-12.
  5. Kiourti, Asimina; Nikita, Konstantina (2012). "A Review of Implantable Patch Antennas for Biomedical Telemetry: Challenges and Solutions". IEEE Antennas and Propagation Magazine. 54 (3): 210–228. doi:10.1109/MAP.2012.6293992. S2CID   20515196.
  6. Wolcott, T.G. (1980). "Optical and Radio Optical Techniques for Tracking Nocturnal Animals". A Handbook on Biotelemetry and Radio Tracking. pp. 333–338. doi:10.1016/B978-0-08-024928-5.50044-0. ISBN   9780080249285.{{cite book}}: |journal= ignored (help)
  7. Halfyard, Edmund A.; Webber, D.; Papa, J. Del; Leadley, T.; Kessel, S. T.; Colborne, S. F.; Fisk, A. T. (2017). "Evaluation of an acoustic telemetry transmitter designed to identify predation events". Methods in Ecology and Evolution. 8 (9): 1063–1071. doi: 10.1111/2041-210X.12726 . ISSN   2041-210X.