Blackleg is a plant disease of potato caused by pectolytic bacteria that can result in stunting, wilting, chlorosis of leaves, necrosis of several tissues, a decline in yield, and at times the death of the potato plant. The term "blackleg" originates from the typical blackening and decay of the lower stem portion, or "leg", of the plant. [1]
Blackleg in potatoes is most commonly caused by Pectobacterium atrosepticum (older synonym: Erwinia carotovora subsp. astroseptica), a gram-negative, nonsporulating, facultative anaerobe that is also associated with soft rot of potatoes. While other bacterial species such as Pectobacterium carotovorum and Dickeya dadantii can exhibit symptoms similar to blackleg of potato, these pathogens exhibit broader host ranges, are present in different climates, and typically are more associated with soft rot diseases. [1] [2]
Early blackleg symptoms develop in the growing season soon after the plants emerge. They are characterized by stunted, yellowish foliage that has a stiff, upright habit. [1] [3] The lower part of the below ground stem of such plants is dark brown to black in color and extensively decayed. When infected, the pith region of the stem is particularly susceptible to decay and may extend upward in the stem far beyond the tissue with externally visible symptoms. Young plants affected by blackleg are particularly susceptible, typically dying after a halt in development. [1]
Blackleg symptoms may develop in more mature plants during the later part of the growing season, and are distinguished from those that develop earlier in the season. Blackleg appears as a black discoloration of previously healthy stems, accompanied by a rapid wilting, and sometimes yellowing, of the leaves. Starting below ground, black discoloration moves up the stem, often until the entire stem is black and wilted. However, in some cases of early disease development, mature stems may turn yellow and wilt even before black decay is evident. However, after the entire stem exhibits disease symptoms, the wilted plant can be lost from view in the healthy potato plant canopy. [1] [3]
The pathogen P. atrosepticum thrives in moist, cool conditions, typically causing symptoms at temperatures below 25 °C (77 °F). It is vulnerable to temperatures above 36 °C (97 °F) and dry conditions, and thus survives best in potato tuber tissues, although it is known to survive in other plant tissues. Unlike other pectolytic bacteria, evidence shows that P. atrosepticum does not survive well in soil outside its host tissue. [1] [4]
Disease symptoms are not necessarily uniformly exhibited from both shoots originating from a single tuber or in a field infested with P. atrosepticum. Additionally, presence of P. atrosepticum in the soil is not necessarily associated with disease symptoms. [3] This is partly explained by the narrow environmental conditions needed for pathogenicity, although new findings in research are showing strong evidence of density dependent quorum sensing signals used by P. atrosepticum in exhibiting virulence. [4] [7]
Blackleg of potato has been successfully managed primarily using cultural techniques. These techniques generally rely on sterile propagation techniques, using knowledge P. atrosepticum's narrow environmental range to control planting timing, removing infected tissues and plants during the growing season, reducing tuber harvest damage, and proper storage. [1] See the sections below for more details.
Given that tubers are the primary mechanism by which P. atrosepticum survives and spreads, clean seed potato stocks established using tissue cultures have been very successful in breaking the cycle of carrying disease forward from year to year. Buildup of tuber contamination is limited by reducing the number of field generations of these seed potatoes to 5 to 7 years. [1] Some methods of sterile propagation include planting only healthy, whole seed potatoes. If healthy seed potatoes are to be cut, they should be first warmed to 12–15 °C (54–59 °F), cut, stored for 2 days at 12–15 °C (54–59 °F) in a humid environment with good air flow. This warming and storing period ensures proper suberization of the tissue, which forms a barrier from P. atrosepticum infestation. [6]
Given that P. atrosepticum thrives in cool, moist conditions, planting seed potatoes in well-drained soil after soil temperatures have increased well above 10 °C (50 °F) is very important to halting the onset of the disease early in the plant life cycle, when the plant is more susceptible to the worst effects of the disease. [1]
Increasing application of nitrogen or complete fertilizers have shown reduced incidence of blackleg stem infection. [6]
Although there is a risk of spreading the disease pathogen through injury of healthy plants, if proper techniques are followed, rogueing out all parts of the blackleg-diseased plants can be a useful way to reduce soil inoculum. [1]
Given that P. atrosepticum survives best in the tubers and additionally contributes to soft rot, it is critically important to reduce spread of the pathogen by removing tubers exhibiting soft rot decay before they are spread over grading lines and bin pilers for storage. Reducing post-harvest wounding is also important, especially for seed potatoes. Additionally, it is critically important to keep the potatoes at a low temperature with adequate aeration and humidity control in order to minimize development of the pathogen in infested stocks. [1] [4]
New research on P. atrosepticum virulence pathways has elucidated the use of quorum sensing molecules to exhibit pathogenicity. These pathways include the control of the production of plant cell wall degrading enzymes in addition to other virulence factors. Research indicating the role of other soil microbes in degrading P. atrosepticum quorum sensing communication molecules provides the possibility for safe and effective control of the disease. [7]
Plant defense mechanism studies on P. atrosepticum, used to better understand disease resistance, have focused more on the soft-rot symptoms that can sometimes be associated with P. atrosepticum. However, research is successfully identifying the quantity and type of plant resistance molecules that are produced in response to pathogen associated molecular patterns (PAMPs), and their effects on the activity and virulence of pathogens such as P. atrosepticum. [8]
The symptoms of Blackleg of Potato were first described in Germany between 1878 and 1900, but the descriptions were incomplete and cannot definitively be linked to the particular disease. The first complete descriptions of Blackleg in potatoes were formed between 1901 and 1917 by several different scientists. These descriptions consisted of many different names, such as Bacillus phytophthorus, Bacillus omnivorus, Bacillus oleraceae, Bacillus atrosepticus, Bacillus aroideae, Bacillus solanisaprus, and Bacillus melanogenes. Investigations between 1918 and 1958 confirmed that these bacteria were of a single species, and were officially appointed the name Pectobacterium carotovorum. A variety of Pectobacterium (P. carotovorum var. atrosepticum, which includes B. melanogenes and B. phytophthorus) can be differentiated from the rest, although it is considered the same species of bacteria. [9]
Although it was an important disease historically, Blackleg of potato is less of an issue today due to very successful results from changes in cultural practices regarding seed potato certification programs. [1] [4] As a major problem in wet, cool seasons and irrigated fields, historically it has more heavily impacted northern U.S. states with climates amenable to disease development, with disease incidence levels as high as 10%. In places like Scotland, it historically has had disease incidence levels of up to 30%. [6] Victoria, Australia also had issues with this disease in the past. [10] In terms of the impact of the disease on yields, one past study indicated that for every 1% increase in disease incidence, yields generally trended down at 0.8%. [11]
Given the success with cultural control practices in managing the disease, cultivars resistance is better characterized in the U.S. by susceptible varieties. Washington State University, which has posted a large comprehensive list of potato cultivars available in North America, only calls out two blackleg susceptible varieties: Monona and Superior. [12]
In the U.K., and more specifically in Scotland, where the disease has been an issue, they better characterize blackleg-resistant varieties. Varieties with resistance values of 6-9 on a scale of 1-9 include Avondale, Axona, Bonnie, Cara, Emma, Isle Of Jura, Orla, Osprey, Sarpo Mira, Saxon, Sebastian, Vales Sovereign. [13]
Stewart's wilt is a bacterial disease of corn caused by the bacterium Pantoea stewartii. The disease is also known as bacterial wilt or bacterial leaf blight and has been shown to be quite problematic in sweet corn. The causal organism is a facultatively anaerobic, gram-negative, rod-shaped bacterium. The disease is endemic in the mid-Atlantic and Ohio River Valley regions and in the southern portion of the Corn Belt. Stewart's Wilt causes minor reductions in field corn yield, despite common occurrence, because most hybrids grown in the Midwest have adequate resistance. However, the disease can be problematic in seed production because many countries have restrictions on maize seed from areas where the Stewart's Wilt occurs.
Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).
Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a very wide range of potential host plants. It is known as Granville wilt when it occurs in tobacco. Bacterial wilts of tomato, pepper, eggplant, and Irish potato caused by R. solanacearum were among the first diseases that Erwin Frink Smith proved to be caused by a bacterial pathogen. Because of its devastating lethality, R. solanacearum is now one of the more intensively studied phytopathogenic bacteria, and bacterial wilt of tomato is a model system for investigating mechanisms of pathogenesis. Ralstonia was until recently classified as Pseudomonas, with similarity in most aspects, except that it does not produce fluorescent pigment like Pseudomonas. The genomes from different strains vary from 5.5 Mb up to 6 Mb, roughly being 3.5 Mb of a chromosome and 2 Mb of a megaplasmid. While the strain GMI1000 was one of the first phytopathogenic bacteria to have its genome completed, the strain UY031 was the first R. solanacearum to have its methylome reported. Within the R. solanacearum species complex, the four major monophyletic clusters of strains are termed phylotypes, that are geographically distinct: phylotypes I-IV are found in Asia, the Americas, Africa, and Oceania, respectively.
Clavibacter michiganensis is an aerobic non-sporulating Gram-positive plant pathogenic actinomycete of the genus Clavibacter. Clavibacter michiganensis has several subspecies. Clavibacter michiganensis subsp. michiganensis causes substantial economic losses worldwide by damaging tomatoes and potatoes.
Ceratocystis fimbriata is a fungus and a plant pathogen, attacking such diverse plants as the sweet potato and the tapping panels of the Para rubber tree. It is a diverse species that attacks a wide variety of annual and perennial plants. There are several host-specialized strains, some of which, such as Ceratocystis platani that attacks plane trees, are now described as distinct species.
Phytophthora erythroseptica—also known as pink rot along with several other species of Phytophthora—is a plant pathogen. It infects potatoes causing their tubers to turn pink and damages leaves. It also infects tulips (Tulipa) damaging their leaves and shoots.
Verticillium dahliae is a fungal plant pathogen. It causes verticillium wilt in many plant species, causing leaves to curl and discolor. It may cause death in some plants. Over 400 plant species are affected by Verticillium complex.
Pectobacterium carotovorum is a bacterium of the family Pectobacteriaceae; it used to be a member of the genus Erwinia.
Ditylenchus destructor is a plant pathogenic nematode commonly known as the potato rot nematode. Other common names include the iris nematode, the potato tuber eelworm and the potato tuber nematode. It is an endoparasitic, migratory nematode commonly found in areas such as the United States, Europe, central Asia and Southern Africa.
A wilt disease is any number of diseases that affect the vascular system of plants. Attacks by fungi, bacteria, and nematodes can cause rapid killing of plants, large tree branches or even entire trees.
Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), is considered the most important and most destructive disease of crucifers, infecting all cultivated varieties of brassicas worldwide. This disease was first described by botanist and entomologist Harrison Garman in Lexington, Kentucky, US in 1889. Since then, it has been found in nearly every country in which vegetable brassicas are commercially cultivated.
Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.
Dickeya solani is a bacterium that causes blackleg and soft rot in potato crops. Its symptoms are often indistinguishable from those caused by Pectobacterium but is more virulent, causing disease from lower levels of inoculum and spreading through the plant more effectively.
Pectobacterium atrosepticum is a species of bacterium. It is a plant pathogen causing blackleg of potato. Its type strain is CFBP 1526T. Its genome has been sequenced.
Pectobacterium wasabiae is a plant pathogenic bacterium that was first reported to cause disease on wasabi plants. A closely related species, yet to be formally named, also causes disease on potato. Unlike most Pectobacterium, P. wasabiae strains lack a type III secretion system. Its type strain is CFBP 3304T(=LMG 8404T =NCPPB 3701T =ICMP 9121T).
Fusarium dry rot is one of the most common potato diseases. It is caused by fungi in the genus Fusarium. This fungi causes a variety of colored rots in potatoes. This pathogen, while having both a sexual and asexual form, stays in an asexual cycle due to the way it spreads. Preferring warmer climates, it is not uncommon to find this pathogen in the northern United States where it has been reported to affect yield as much as 60%.
Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.
Erwinia papayae is a bacteria species causing bacterial crown rot, or bacterial canker, a noteworthy and grave disease of papaya.
Clavibacter sepedonicus is a species of bacteria in the genus Clavibacter. C. sepedonicus is a high-profile alien plant pathogen of A2 Quarantine status affecting only potatoes. It causes a disease in potatoes known as 'ring rot' due to the way it rots vascular tissue inside potato tubers It is present in parts of Europe but is under statutory control under 'Council Directive 93/85/EEC' of 4 October 1993 on the control of potato ring rot. This means that if an outbreak occurs, the outbreak must be controlled and if possible the disease has to be eradicated. If necessary, prohibitions are put into place to prevent further spread.
Viral diseases of potato are a group of diseases caused by different types of viruses that affect potato crops worldwide and, although they do not affect human or animal health since they are viruses that only infect vegetables, they are a source of great economic losses annually. About 28 viruses have been reported infecting potato crops. However, potato virus X (PVX), potato virus Y (PVY), and potato leafroll virus (PLRV) are the most important viruses worldwide. Some others are of economic importance only in some regions. Such is the case of potato virus M (PVM) in some Asian and European countries.
Dr. Leach first became impressed with the role of insects in the development of plant diseases, and the potential for research in this field, when he began a study in 1923 of the role of the seed-corn maggot in the development of potato blackleg. This classic study, published in 1926 (5), illustrates how insects break down natural defense barriers, such as the wound periderm, while transmitting inoculum of the pathogen to the infection court. Further studies revealed the symbiotic relationship of the causal bacterium and the maggot (7).