Dickeya dadantii

Last updated

Dickeya dadantii
Onion (Allium cepa)- Bacterial soft rot.jpg
Soft rot in an onion caused by Dickeya dadantii or Pectobacterium carotovorum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Pectobacteriaceae
Genus: Dickeya
Species:
D. dadantii
Binomial name
Dickeya dadantii
Samson et al. 2005 [1]

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. [2] Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends, much like the other members of the genus, Dickeya. [3] Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous). [4]

Contents

In the natural plant environment, D. dadantii causes plant maladies such as necrosis, blight and “soft rot,” which is a progressive tissue maceration. [5] D. dadantii contains many pectinases that are able to macerate and break down the plant cell wall material. This exposed part of the plant releases nutrients that can facilitate bacterial growth. Commonly infected plants include potato tubers, bulbs of vegetables, and ornamental crops.

Hosts

D. dadantii causes disease on several different ornamental and horticultural host plants throughout the world including: tropical, subtropical, and temperate climates. The host range of D. dadantii continues growing as new susceptible species are continuously being documented. [6] It has also been found in soils, [7] rivers and irrigation water. [8] Host specificity is not yet fully understood. Originally pathovar groups were documented according to the hosts from which they were isolated. Today 50+ species have been identified and more are possible if another classification system based on biovars were to be used. [9] Disease is most often reported on bananas, carnations, and chrysanthemums, but the list of host species is quite vast. Important host families and species economically affected include:

Susceptible FamiliesExamples of specific species affected
Solanaceae peppers, potato, eggplant, tomato, tobacco
Convolvulaceae sweet potato
Brassicaceae broccoli, radishes
Apiaceae celery, carrot
Poaceae sugar cane, sorghum, rice
Bromeliaceae pineapple, urn plant
Asparagaceae asparagus
Amaryllidaceae onions

There are also many significant hosts for D. dadantii present in ornamental and floriculture industries, with the families including:

Susceptible FamiliesExamples of specific species affected
Orchidaceae orchids
Liliaceae tulips
Asteraceae chickory, chrysanthemums
Caryophyllaceae carnations
Asparagaceae hyacinths, dracaena
Crassulaceae kalanchoe, sedums
Amaryllidaceae amaryllis
Begoniaceae begonia

Note: the plant families listed above show examples of some specific species infected within each family, not to say D. dadantii has the ability to infect every species within a family. [10] [11]

Symptoms

D. dadantii is phytopathogenic bacterium causing soft rot diseases on many host plants including some which are economically important. [12] D. dadantii, more commonly known as: soft rot, brown rot or blackleg, causes characteristic symptoms associated with other bacterial wilts, causing final diagnosis to be difficult. The pathogen primarily seeks to attack the plant's xylem vessels located in leaves, stems, blossoms and storage organs of herbaceous plants. D. dadantii is able to infect hosts at any point in its life cycle. In addition to symptoms of wilt, the disease appears as sunken and cracked external lesions also having a brown interior in cross section in subterranean bulbs and tubers [13] Diseased plants will display a variety of symptoms including: wilting, stunting and vascular discoloration of the stems. Early symptoms include water soaked lesions at the site of infection, gradually expanding chlorotic leaves and loss of turgor in tissues. [14] The intensity of D. dadantii colonization relates to the amount of disease and degree of damage. The pathogen is very successful at infiltrating host tissues due to the many pectinases responsible for disassembly of plant cell wall polysaccharides. Once the cell wall is degraded cellular structure collapses and this cell maceration gives a characteristic "water-soaked" or rotted appearance. [12] D. dadantii grow intercellularly, continuing to degrade cells and colonize, until it eventually reaches xylem tissues. Upon reaching the xylem vessels D. dadantii possesses the ability to spread to new regions of the host and other areas may begin to display symptoms. Colonization within the xylem restricts flow of water causing loss of turgor pressure and wilting of foliage and stems. Restricted movement of important plant compounds eventually lead to death of the host. [15]

Disease cycle

D. dadantii is able to infect the fleshy, succulent plant parts, such as tubers, rhizomes, stems and leaves, causing localized symptoms. As discussed in the symptoms section, it is also capable of infecting the xylem, resulting in a systemic infection that causes wilting. [4] D. dadantii typically originates from infected insects, vegetables or host plant residues. However, the bacteria are also able to survive in soils and other plants without infection. [16] The ability of D. dadantii to live in the soil as a plant pathogen is regulated by virulence genes in response to environmental factors that control whether the bacterium is saprophytic or pathogenic. [17] When D. dadantii is virulent it enters primarily through hydathodes and wounds, with the assistance of jasmonates, [18] where the bacteria rapidly breakdown the parenchymatous tissues with the use of pectic enzymes. [12] D. dadantii produces many pectinases that are responsible for disassembly of the plant cell wall. After the cell wall is degraded, and the contents of the cell are accessed, D. dadantii catabolizes glucose by a fermentation pathway. [19] After the plant has been accessed, colonization is a complicated process that requires many additional factors for successful infection. These factors include: “cellulases, iron assimilation, a Hrp type III secretion system, exopolysaccharides, motility, and proteins involved in resistance against plant defense mechanisms”. [12] The plant attempts to resist the infection with different defense mechanisms and D. dadantii must overcome obstacles, such as defense barriers, secondary metabolites and toxic materials. [20] An example of a plant defense mechanism is to produce a defensive barrier, such as a cork layer. However, when the infection is spread by larvae, the cork layer is eaten as quickly as it is made by the plant. Consequently, the protective cork layer is an ineffective protection mechanism. [21] The bacteria continue to spread and multiply throughout the plant, moving in the intercellular spaces, within collapsed cells and the xylem. As the bacteria grow in numbers, additional hosts are infected through the spread of bacteria by: splashing water from infected plants, insects, and cultural practices including the use of contaminated tools, gloves and machinery and improper storage of cultivated crops or seeds. [15] D. dadantii can be a problem year round, given the right environmental conditions exist. It is able to infect plants in greenhouses, indoor interiorscapes and tropical areas where temperatures and humidity remains high. At higher latitudes, infections are mainly during the hot and humid summer months.[ citation needed ]

Environment

D. dadantii is a pathogen that is spread through water with the splashing of water from infected plants or recycled irrigation water, insects and cultural practices, such as using contaminated tools and machinery or improper storage of vegetables or seeds with infected substances. Insects are an important vector for movement of the pathogen. Insects are able to carry the bacteria externally and internally and are normally unharmed by the bacteria. However, there is continued research in the area of D. dadantii as an insect pathogen to aphids. The pea aphid is able to contract the pathogen from an infected plant and is destroyed in a mode of action similar to Bacillus thuringiensis [12] by producing cyt-like entomotoxins that cause sepsis. [22] The most important factor to disease development is environmental factors consisting of high humidity and temperatures of 71° to 93 °F (22° to 34 °C). In greenhouses, D. dadantii can survive in potting media with or without a host plant for a year or more and in the leaves of host or nonhost plants for 5 to 6 months. [15] It is unable to be pathogenic below 20 °C (68 °F). [23]

Management

D. dadantii is a member within the genus that is able to produce the pigment indigoidine. Rapid identification of this species utilizes this water-insoluble blue pigment appearing in the bacterial colonies as a chemotaxonomic trait. [24] The presence of a soft rot may be an indication of a bacterial disease. However, many other organisms and plant disorders may appear as various soft rot or black lesions. Proper identification is important for treatment and control measures. Thus a differential media is used to culture Dickeya species and isolate or identify D. dadantii. Researchers at Fu Jen Catholic University in Taiwan developed a medium that differentiates D. dadantii from other species. This NGM medium contains nutrient agar (NA) and glycerol medium supplemented with MnCl2 :4H2O. To make this media, mix 23 g of nutrient agar, 10 ml glycerol (1% v/v), and 0.4 g MnCl2:4H2O (2 mM) to 1.0 liter of water. Note the pH of this media is 6.5 and it has a light brown base color. [24] The proper temperature for culturing D. dadantii is 28 degrees Celsius. A positive result occurs when a bacterial streak produces a brownish blue color on the agar plate. Further isolation and extraction of the indigoidine pigment is possible using the methods described by Chatterejee and Brown. [25]

Currently there are no effective chemical controls for D. dadantii. The most important practices involve lowering the prevalence of disease by proper sanitation of materials, exclusion of infected materials, and avoiding environments conducive to disease. Most important to disease management is exclusion because D. dadantii can move through vegetatively propagated tissues asymptomatically. Therefore, it is important to have certified disease-free stock. Some promising biological control research is being done for orchid species. D. dadantii has been studied in commercially valuable Phalaenopsis orchids. Soft rot diseases caused by Dickeya spp is one of the most devastating diseases in orchid production. [26] Orchid growers have used environmental controls to provide the optimum growth conditions for the plants while minimizing the cultivation of the pathogens. Proper control of humidity and air movement combined with clean, high quality water, in a temperature and light regulated facility are the most commonly employed methods for disease prevention. Other biological controls of D. dadantii include symbiotic fungi known as mycorrhiza and possibly transgenic proteins. Transfer of sweet pepper genes coding for ferredoxin like protein and defensin was shown to reduce D. dadantii disease in Phalaenopsis orchids under cultivation. [26] [27]

Importance

D. dadantii has been associated with bacterial soft rot diseases of a majority of foliage plants, numerous flowering plants and many vegetables. [28] It is a major pathogen for many economic crops such as potatoes, banana and pineapple in addition to ornamental house plants. [10] It causes blackleg of potato. [23]

In addition to the pathogen having important negative consequences, D. dadantii is being used for its positive contributions. Most noble of its contributions is an enzyme, asparaginase, being used in conjunction with other chemotherapeutic agents for treatment of acute lymphoblastic leukemia (ALL) [29] and non-Hodgkin's lymphoma in patients who have had allergic reactions to E. coli derived asparaginase Elspar or pegaspargase (Oncaspar). [30] Secondly, with a strong governmental push towards increasing renewable fuel resources, D. dadantii is being studied for its utilization in ethanol fuel production and its ability to ferment and break down cell walls and pectins as an alternative to E. coli. [31] Although not as effective as E. coli, some genes from D. dadantii were added to E. coli through genetic engineering to allow for pectin degradation by E. coli. [32]

Related Research Articles

<span class="mw-page-title-main">Fire blight</span> Disease of some Rosaceae trees (especially apples and pears) caused by Erwinia amylovora

Fire blight, also written fireblight, is a contagious disease affecting apples, pears, and some other members of the family Rosaceae. It is a serious concern to apple and pear producers. Under optimal conditions, it can destroy an entire orchard in a single growing season.

<i>Erwinia</i> Genus of bacteria

Erwinia is a genus of Enterobacterales bacteria containing mostly plant pathogenic species which was named for the famous plant pathologist, Erwin Frink Smith. It contains Gram-negative bacteria related to Escherichia coli, Shigella, Salmonella, and Yersinia. They are primarily rod-shaped bacteria.

<span class="mw-page-title-main">Stewart's wilt</span> Bacterial disease of corn

Stewart's wilt is a bacterial disease of corn caused by the bacterium Pantoea stewartii. The disease is also known as bacterial wilt or bacterial leaf blight and has been shown to be quite problematic in sweet corn. The causal organism is a facultatively anaerobic, gram-negative, rod-shaped bacterium. The disease is endemic in the mid-Atlantic and Ohio River Valley regions and in the southern portion of the Corn Belt. Stewart's Wilt causes minor reductions in field corn yield, despite common occurrence, because most hybrids grown in the Midwest have adequate resistance. However, the disease can be problematic in seed production because many countries have restrictions on maize seed from areas where the Stewart's Wilt occurs.

Pantoea stewartii is a species of plant pathogenic bacteria that causes Stewart's wilt of corn, as well as jackfruit-bronzing disease, bacterial leaf wilt of sugarcane, and leaf blight in rice. P. stewartii is a gram-negative bacterium in the Enterobacterales, a group that also includes Escherichia coli and several other human, animal, and plant pathogens. Most research on this bacterial pathogen to date has been done on strains infecting corn as the other diseases have been identified much more recently. Due to being relatively easy to work with in laboratory research, P. stewartii has been used to study a range of processes in bacterial physiology including quorum sensing, bacterial pigment production, endoglucanase enzymes, and siderophore-mediated iron acquisition.

<i>Ralstonia solanacearum</i> Disease bacteria of tomato family, others

Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a very wide range of potential host plants. It is known as Granville wilt when it occurs in tobacco. Bacterial wilts of tomato, pepper, eggplant, and Irish potato caused by R. solanacearum were among the first diseases that Erwin Frink Smith proved to be caused by a bacterial pathogen. Because of its devastating lethality, R. solanacearum is now one of the more intensively studied phytopathogenic bacteria, and bacterial wilt of tomato is a model system for investigating mechanisms of pathogenesis. Ralstonia was until recently classified as Pseudomonas, with similarity in most aspects, except that it does not produce fluorescent pigment like Pseudomonas. The genomes from different strains vary from 5.5 Mb up to 6 Mb, roughly being 3.5 Mb of a chromosome and 2 Mb of a megaplasmid. While the strain GMI1000 was one of the first phytopathogenic bacteria to have its genome completed, the strain UY031 was the first R. solanacearum to have its methylome reported. Within the R. solanacearum species complex, the four major monophyletic clusters of strains are termed phylotypes, that are geographically distinct: phylotypes I-IV are found in Asia, the Americas, Africa, and Oceania, respectively.

Brenneria salicis is a Gram-negative bacterium that is pathogenic on plants.

<span class="mw-page-title-main">Bacterial wilt</span> Species of bacterium

Bacterial wilt is a complex of diseases that occur in plants such as Cucurbitaceae and Solanaceae and are caused by the pathogens Erwinia tracheiphila, a gram-negative bacterium, or Curtobacterium flaccumfaciens pv. flaccumfaciens, a gram-positive bacterium. Cucumber and melon plants are most susceptible, but squash, pumpkins, and gourds may also become infected.

<span class="mw-page-title-main">Wilt disease</span> Group of plant diseases

A wilt disease is any number of diseases that affect the vascular system of plants. Attacks by fungi, bacteria, and nematodes can cause rapid killing of plants, large tree branches or even entire trees.

Black rot, caused by the bacterium Xanthomonas campestris pv. campestris (Xcc), is considered the most important and most destructive disease of crucifers, infecting all cultivated varieties of brassicas worldwide. This disease was first described by botanist and entomologist Harrison Garman in Lexington, Kentucky, US in 1889. Since then, it has been found in nearly every country in which vegetable brassicas are commercially cultivated.

<span class="mw-page-title-main">Bacterial soft rot</span> Bacterial plant disease

Bacterial soft rots are caused by several types of bacteria, but most commonly by species of gram-negative bacteria, Erwinia, Pectobacterium, and Pseudomonas. It is a destructive disease of fruits, vegetables, and ornamentals found worldwide, and affects genera from nearly all the plant families. The bacteria mainly attack the fleshy storage organs of their hosts, but they also affect succulent buds, stems, and petiole tissues. With the aid of special enzymes, the plant is turned into a liquidy mush in order for the bacteria to consume the plant cell's nutrients. Disease spread can be caused by simple physical interaction between infected and healthy tissues during storage or transit. The disease can also be spread by insects. Control of the disease is not always very effective, but sanitary practices in production, storing, and processing are something that can be done in order to slow the spread of the disease and protect yields.

<i>Dickeya solani</i> Species of bacterium

Dickeya solani is a bacterium that causes blackleg and soft rot in potato crops. Its symptoms are often indistinguishable from those caused by Pectobacterium but is more virulent, causing disease from lower levels of inoculum and spreading through the plant more effectively.

Oligogalacturonate-specific porins (KdgM) are a family of outer bacterial membrane proteins from Dickeya dadantii. The phytopathogenic Gram-negative bacteria D. dadantii secretes pectinases, which are able to degrade the pectic polymers of plant cell walls, and uses the degradation products as a carbon source for growth. Synthesis of KdgM is strongly induced in the presence of pectic derivatives. KdgM behaves like a voltage-dependent porin that is slightly selective for anions and that exhibits fast block in the presence of trigalacturonate. KdgM seems to be monomeric.

The host–pathogen interaction is defined as how microbes or viruses sustain themselves within host organisms on a molecular, cellular, organismal or population level. This term is most commonly used to refer to disease-causing microorganisms although they may not cause illness in all hosts. Because of this, the definition has been expanded to how known pathogens survive within their host, whether they cause disease or not.

<span class="mw-page-title-main">Beet vascular necrosis</span> Bacterial disease in beet plants

Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum subsp. betavasculorum, which has also been known as Pectobacterium betavasculorum and Erwinia carotovora subsp. betavasculorum. It was classified in the genus Erwinia until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.

<span class="mw-page-title-main">Blackleg (potatoes)</span> Bacterial disease of potato plants

Blackleg is a plant disease of potato caused by pectolytic bacteria that can result in stunting, wilting, chlorosis of leaves, necrosis of several tissues, a decline in yield, and at times the death of the potato plant. The term "blackleg" originates from the typical blackening and decay of the lower stem portion, or "leg", of the plant.

Bacterial wilt of turfgrass is the only known bacterial disease of turf. The causal agent is the Gram negative bacterium Xanthomonas campestris pv. graminis. The first case of bacterial wilt of turf was reported in a cultivar of creeping bentgrass known as Toronto or C-15, which is found throughout the midwestern United States. Until the causal agent was identified in 1984, the disease was referred to simply as C-15 decline. This disease is almost exclusively found on putting greens at golf courses where extensive mowing creates wounds in the grass which the pathogen uses in order to enter the host and cause disease.

<span class="mw-page-title-main">Bacterial wilt of carnation</span> Bacterial plant disease

Bacterial wilt of carnations is a bacterial disease caused by the plant pathogen Paraburkholderia caryophylli. Previously named Pseudomonas caryophilli, the pathogen is an aerobic gram negative bacteria known for only being capable of entering its host through wounds. Once inside the host, it colonizes the vascular system and roots causing symptoms such as, internal stem cracking, yellowing of the leaves, wilting, and the development of cankers. As a bacterial disease, bacterial wilt of carnations can also be characterized by signs such as bacterial streaming, and bacterial ooze.

Robert S. Dickey was an American phytopathologist, professor emeritus of Plant Pathology at the Cornell University and the namesake of the bacterial genus Dickeya.

Erwinia papayae is a bacteria species causing bacterial crown rot, or bacterial canker, a noteworthy and grave disease of papaya.

Clavibacter sepedonicus is a species of bacteria in the genus Clavibacter. C. sepedonicus is a high-profile alien plant pathogen of A2 Quarantine status affecting only potatoes. It causes a disease in potatoes known as 'ring rot' due to the way it rots vascular tissue inside potato tubers It is present in parts of Europe but is under statutory control under 'Council Directive 93/85/EEC' of 4 October 1993 on the control of potato ring rot. This means that if an outbreak occurs, the outbreak must be controlled and if possible the disease has to be eradicated. If necessary, prohibitions are put into place to prevent further spread.

References

  1. Samson, R.; Legendre, J. B.; Christen, R.; Saux, M. F.; Achouak, W.; Gardan, L. (2005). "Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. As Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov". International Journal of Systematic and Evolutionary Microbiology . 55 (Pt 4): 1415–1427. doi: 10.1099/ijs.0.02791-0 . PMID   16014461.
  2. "Genome Evolution Laboratory". Genome Center of Wisconsin. 17 January 2007. Archived from the original on 14 December 2013. Retrieved 30 Oct 2012.
  3. Elphinstone, John; Toth, Ian (2007). "British Potato Council" (PDF). www.veksthusinfo.no.
  4. 1 2 "Bacterial leaf blight of aglaonema. Plant Disease: Cooperative Extension Service: College of Tropical Agriculture and Human Resources, 64" (PDF).
  5. Van Vaerenbergh J, Baeyen S, De Vos P, Maes M (May 2012). "Sequence Diversity in the Dickeya fliC Gene: Phylogeny of the Dickeya Genus and TaqMan® PCR for D. solani, New Biovar 3 Variant on Potato in Europe". PLOS ONE . 7 (5): e35738. Bibcode:2012PLoSO...735738V. doi: 10.1371/journal.pone.0035738 . PMC   3343043 . PMID   22570692.
  6. Ma, B.; Hibbing, M.E.; Kim, H.S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; Charkowski, A.O. (2007). "Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya". Phytopathology . American Phytopathological Society. 97 (9): 1150–1163. doi:10.1094/phyto-97-9-1150. PMID   18944180.
  7. Robert-Baudouy J, Nasser W, Condemine G, Reverchon S, Shevchik VE, Hugouvieux-Cotte-Pattat N (2000) Pectic enzymes of Erwinia chrysanthemi, regulation and role in pathogenesis. In: Stacey G, Keen NT (eds) Plant–microbe interactions, vol 5. APS, St. Paul, pp 221–268
  8. Cother, EJ; Gilbert, RL (1990). "Presence of Erwinia chrysanthemi in two major river systems and their alpine sources in Australia". Journal of Applied Bacteriology . 69 (5): 629–738. doi:10.1111/j.1365-2672.1990.tb01570.x.
  9. Samson, R., and Nassan-Agha, N. 1978. Biovars and serovars among 129 strains of Erwinia chrysanthemi. Pages 547-553 in: Proc. Int. Conf. Plant Pathog. Bact., 4th Station de Pathologie Vegetale et Phytobacteriologie, Angers, France. 1978. Ed. gibert-Clarey, Tours, France.
  10. 1 2 "EPPO Data sheets on quarantine pests: Erwinia chrysanthemi. In EPPO quarantine pest" (PDF). European and Mediterranean Plant Protection Organization (EPPO). Archived from the original (PDF) on 2015-06-04. Retrieved 2012-10-24.
  11. Barras, F; Vangijsegem, F; Chatterjee, AK (1994). "Extracellular enzymes and pathogenesis of soft-rot Erwinia". Annual Review of Phytopathology . 32: 201–234. doi:10.1146/annurev.py.32.090194.001221.
  12. 1 2 3 4 5 Grenier, A.; et al. (2006). "The phytopathogen dickeya dadantii (erwinia chrysanthemi 3937) is a pathogen of the pea aphid". Applied and Environmental Microbiology. 72 (3): 1956–1965. Bibcode:2006ApEnM..72.1956G. doi:10.1128/AEM.72.3.1956-1965.2006. PMC   1393189 . PMID   16517643.
  13. Slawiak, M.; Lojkowska, E.; Van der Wolf, J.M. (2009). "First report of bacterial soft rot on potato caused by Dickeya sp. (syn. Erwinia chrysanthemi) in Poland". Plant Pathology. 58 (4): 794. doi: 10.1111/j.1365-3059.2009.02028.x .
  14. Komatsu, Tsutomu; Horita, Harukuni; Kitayama, Masayuki (2002). "Bacterial Wilt of China Aster Caused by Erwinia Chrysanthemi". Journal of General Plant Pathology . 68 (1): 105–7. doi:10.1007/pl00013045. S2CID   7147704.
  15. 1 2 3 "Bacterial diseases of anthurium, dieffenbachia, philodendron, and syngonium" (PDF). ipm.illinois.edu.
  16. Nelson, S. (2009). "Bacterial leaf blight of aglaonema. Plant Disease: Cooperative Extension Service: College of Tropical Agriculture and Human Resources, 64" (PDF).
  17. Hugouvieux-Cotte-Pattat, N.; Condemine, G. (1996). "Regulation of pectinolysis in erwinia chrysanthemi". Annual Review of Microbiology. 50 (1): 213–258. doi:10.1146/annurev.micro.50.1.213. PMID   8905080.
  18. Antunez-Lamas, M.; Cabrera, E.; Lopez-Solanilla, E.; Solano, R.; González-Melendi, P.; Chico, J. M.; Toth, I.; Birch, P.; Pritchard, L.; Liu, H.; Rodriguez-Palenzuela, P. (2009). "Bacterial chemoattraction towards jasmonate plays a role in the entry of Dickeya dadantii through wounded tissues". Molecular Microbiology. 74 (3): 662–671. doi:10.1111/j.1365-2958.2009.06888.x. PMID   19818025. S2CID   34506623.
  19. "HAMAP".
  20. Joko, T.; Hirata, H.; Tsuyumu, S. (2007). "Sugar transporter (mfsx) of the major facilitator superfamily is required for flagella-mediated pathogenesis in dickeya dadantii 3937". Journal of General Plant Pathology. 73 (4): 266–273. doi:10.1007/s10327-007-0018-8. S2CID   23381259.
  21. Agrios, George N. Plant Pathology. 5th ed. Burlington, MA: Elsevier Academic Press, 2005.
  22. Costechareyre, D.; Balmand, S.; Condemine, G.; Rahbé, Y. (2012). "Dickeya dadantii, a Plant Pathogenic Bacterium Producing Cyt-Like Entomotoxins, Causes Septicemia in the Pea Aphid Acyrthosiphon pisum". PLOS ONE. 7 (1): 1–9. Bibcode:2012PLoSO...730702C. doi: 10.1371/journal.pone.0030702 . PMC   3265518 . PMID   22292023.
  23. 1 2 Toth, Ian; Bell, Kenneth; Holeva, Maria; Birch, Paul (2003). "Soft rot erwiniae: from genes to genomes". Molecular Plant Pathology . 4 (1): 17–30. doi:10.1046/j.1364-3703.2003.00149.x. PMID   20569359. S2CID   37973919.
  24. 1 2 Lee, Yung-An; Yu, Cheng-Pin (February 2006). "A differential medium for the isolation and rapid identification of a plant soft rot pathogen, Erwinia chrysanthemi". Journal of Microbiological Methods. 64 (2): 200–206. doi:10.1016/j.mimet.2005.04.031. PMID   15927293.
  25. Chatterjee, A.K.; Brown, M.A. (1981). "Chromosomal location of a gene (idg) that specifies production of the blue pigment indigoidine in Erwinia chrysanthemi". Current Microbiology. 6 (5): 269–273. doi:10.1007/bf01566875. S2CID   33329891.
  26. 1 2 Liau, CH; Lu, JC; Prasad, V; Hsiao, HH; You, SJ; Lee, JT; Yang, NS; Huang, HE; Feng, TY; Chen, WH; Chan, MT (2003). "The sweet pepper ferredoxin-like protein (pflp) conferred resistance against soft rot disease in Oncidium orchid". Transgenic Research. 12 (3): 329–336. doi:10.1023/A:1023343620729. PMID   12779121. S2CID   1685030.
  27. Chan, YL; Lin, KH; Sanjaya Liao, LJ; Chen, WH; Chan, MT (2005). "Gene Stacking in Phalaenopsis orchid enhances dual tolerance to pathogen attack". Transgenic Research. 14 (3): 279–288. doi:10.1007/s11248-005-0106-5. PMID   16145836. S2CID   9274817.
  28. "(2001). Bacterial diseases of anthurium, dieffenbachia, philodendron, and syngonium" (PDF). ipm.illinois.edu.
  29. ERWINAZE- asparaginase injection, powder, lyophilized, for solution drug label/data at DailyMed from U.S. National Library of Medicine , National Institutes of Health .
  30. Anonymous (2012). "Asparaginase erwinia chrysanthemi (erwinaze) for all". Medical Letter on Drugs and Therapeutics. 54 (1388): 32. PMID   22499236.
  31. Edwards, M. C.; Doran-Peterson, J. (2012). "Access Library Resource". Applied Microbiology and Biotechnology. 95 (3): 565–575. doi:10.1007/s00253-012-4173-2. PMC   3396330 . PMID   22695801.
  32. Edwards, Meredith C.; Henriksen, Emily Decrescenzo; Yomano, Lorraine P.; Gardner, Brian C.; Sharma, Lekh N.; Ingram, Lonnie O.; Doran Peterson, Joy (2011). "Addition of Genes for Cellobiase and Pectinolytic Activity in Escherichia coli for Fuel Ethanol Production from Pectin-Rich Lignocellulosic Biomass". Applied and Environmental Microbiology. 77 (15): 5184–5191. Bibcode:2011ApEnM..77.5184E. doi:10.1128/AEM.05700-11. PMC   3147455 . PMID   21666025.