Dickeya

Last updated

Dickeya
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Pseudomonadota
Class: Gammaproteobacteria
Order: Enterobacterales
Family: Pectobacteriaceae
Genus: Dickeya
Samson et al., 2005
Species

Several, see text

Dickeya is a genus of the family Pectobacteriaceae that consists mainly of pathogens from herbaceous plants. Dickeya is the result of the reclassification of 75 strains of Pectobacterium chrysanthemi, as well as Brenneria paradisiaca CFBP 4178, into a new genus. The genus is named for American phytopathologist Robert S. Dickey. [1] Several species in this genus, such as Dickeya dadantii, are known phytopathogens. [2] [3]

Species now placed here include:[ verification needed ][ citation needed ]

Related Research Articles

<i>Thermus</i> Genus of bacteria

Thermus is a genus of thermophilic bacteria. It is one of several bacteria belonging to the Deinococcota phylum. Thermus species can be distinguished from other genera in the family Thermaceae as well as all other bacteria by the presence of eight conserved signature indels (CSIs) found in proteins such as adenylate kinase and replicative DNA helicase as well as 14 conserved signature proteins (CSPs) that are exclusively shared by members of this genus.

Sphingomonadaceae Family of bacteria

Sphingomonadaceae are a gram-negative bacterial family of the Alphaproteobacteria. An important feature is the presence of sphingolipids in the outer membrane of the cell wall. The cells are ovoid or rod-shaped. Others are also pleomorphic, i.e. the cells change the shape over time. Some species from Sphingomonadaceae family are dominant components of biofilms.

<i>Erwinia</i> Genus of bacteria

Erwinia is a genus of Enterobacterales bacteria containing mostly plant pathogenic species which was named for the famous plant pathologist, Erwin Frink Smith. It contains Gram-negative bacteria related to Escherichia coli, Shigella, Salmonella, and Yersinia. They are primarily rod-shaped bacteria.

<i>Lacticaseibacillus rhamnosus</i> Species of bacterium

Lacticaseibacillus rhamnosus is a bacterium that originally was considered to be a subspecies of L. casei, but genetic research found it to be a separate species in the L. casei clade, which also includes L. paracasei and L. zeae. It is a short Gram-positive homofermentative facultative anaerobic non-spore-forming rod that often appears in chains. Some strains of L. rhamnosus bacteria are being used as probiotics, and are particularly useful in treating infections of the female urogenital tract, most particularly very difficult to treat cases of bacterial vaginosis. The species Lacticaseibacillus rhamnosus and Limosilactobacillus reuteri are commonly found in the healthy female genito-urinary tract and are helpful to regain control of dysbiotic bacterial overgrowth during an active infection. L. rhamnosus sometimes is used in dairy products such as fermented milk and as non-starter-lactic acid bacterium (NSLAB) in long-ripened cheese. While frequently considered a beneficial organism, L. rhamnosus may not be as beneficial to certain subsets of the population; in rare circumstances, especially those primarily involving weakened immune system or infants, it may cause endocarditis. Despite the rare infections caused by L. rhamnosus, the species is included in the list of bacterial species with qualified presumed safety (QPS) status of the European Food Safety Agency.

<i>Dickeya dadantii</i> Species of flowering plant

Dickeya dadantii is a gram-negative bacillus that belongs to the family Pectobacteriaceae. It was formerly known as Erwinia chrysanthemi but was reassigned as Dickeya dadantii in 2005. Members of this family are facultative anaerobes, able to ferment sugars to lactic acid, have nitrate reductase, but lack oxidases. Even though many clinical pathogens are part of the order Enterobacterales, most members of this family are plant pathogens. D. dadantii is a motile, nonsporing, straight rod-shaped cell with rounded ends. Cells range in size from 0.8 to 3.2 μm by 0.5 to 0.8 μm and are surrounded by numerous flagella (peritrichous).

CsrB/RsmB RNA family

The CsrB RNA is a non-coding RNA that binds to approximately 9 to 10 dimers of the CsrA protein. The CsrB RNAs contain a conserved motif CAGGXXG that is found in up to 18 copies and has been suggested to bind CsrA. The Csr regulatory system has a strong negative regulatory effect on glycogen biosynthesis, glyconeogenesis and glycogen catabolism and a positive regulatory effect on glycolysis. In other bacteria such as Erwinia carotovora the RsmA protein has been shown to regulate the production of virulence determinants, such extracellular enzymes. RsmA binds to RsmB regulatory RNA which is also a member of this family.

<i>Cronobacter sakazakii</i> Species of bacterium

Cronobacter sakazakii, which before 2007 was named Enterobacter sakazakii, is an opportunistic Gram-negative, rod-shaped, pathogenic bacterium that can live in very dry places, otherwise known as xerotolerance. C. sakazakii utilizes a number of genes to survive desiccation and this xerotolerance may be strain specific. The majority of C. sakazakii cases are adults but low-birth-weight preterm neonatal and older infants are at the highest risk. The pathogen is a rare cause of invasive infection in infants, with historically high case fatality rates (40–80%).

<i>Cronobacter</i> Genus of bacteria

Cronobacter is a genus of Gram-negative, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped bacteria of the family Enterobacteriaceae. Several Cronobacter species are desiccation resistant and persistent in dry products such as powdered infant formula. They are generally motile, reduce nitrate, use citrate, hydrolyze esculin and arginine, and are positive for L-ornithine decarboxylation. Acid is produced from D-glucose, D-sucrose, D-raffinose, D-melibiose, D-cellobiose, D-mannitol, D-mannose, L-rhamnose, L-arabinose, D-trehalose, galacturonate and D-maltose. Cronobacter spp. are also generally positive for acetoin production and negative for the methyl red test, indicating 2,3-butanediol rather than mixed acid fermentation. The type species of the genus Cronobacter is Cronobacter sakazakii comb. nov.

Cupriavidus metallidurans is a non-spore-forming, Gram-negative bacterium which is adapted to survive several forms of heavy metal stress.

Desulfosporosinus is a genus of strictly anaerobic, sulfate-reducing bacteria, often found in soil.

Methylocella silvestris is a bacterium from the genus Methylocella spp which are found in many acidic soils and wetlands. Historically, Methylocella silvestris was originally isolated from acidic forest soils in Germany, and it is described as Gram-negative, aerobic, non-pigmented, non-motile, rod-shaped and methane-oxidizing facultative methanotroph. As an aerobic methanotrophic bacteria, Methylocella spp use methane (CH4), and methanol as their main carbon and energy source, as well as multi compounds acetate, pyruvate, succinate, malate, and ethanol. They were known to survive in the cold temperature from 4° to 30° degree of Celsius with the optimum at around 15° to 25 °C, but no more than 36 °C. They grow better in the pH scale between 4.5 to 7.0. It lacks intracytoplasmic membranes common to all methane-oxidizing bacteria except Methylocella, but contain a vesicular membrane system connected to the cytoplasmic membrane. BL2T (=DSM 15510T=NCIMB 13906T) is the type strain.

Azoarcus is a genus of nitrogen-fixing bacteria. Species in this genus are usually found in contaminated water, as they are involved in the degradation of some contaminants, commonly inhabiting soil. These bacteria have also been found growing in the endophytic compartment of some rice species and other grasses. The genus is within the family Zoogloeaceae in the Rhodocyclales of the Betaproteobacteria.

Desulfitobacterium hafniense is a species of gram positive bacteria, its type strain is DCB-2T..

Pectobacterium atrosepticum is a species of bacterium. It is a plant pathogen causing blackleg of potato. Its type strain is CFBP 1526T. Its genome has been sequenced.

Pectobacterium betavasculorum is a plant pathogenic bacterium that infects beets. It can cause significant losses during sugar beet production and storage. Little is known about the epidemiology of this disease. Its type strain is CFBP 2122T.

Pectobacterium wasabiae is a plant pathogenic bacterium that was first reported to cause disease on wasabi plants. A closely related species, yet to be formally named, also causes disease on potato. Unlike most Pectobacterium, P. wasabiae strains lack a type III secretion system. Its type strain is CFBP 3304T(=LMG 8404T =NCPPB 3701T =ICMP 9121T).

Robert S. Dickey was an American phytopathologist, professor emeritus of Plant Pathology at the Cornell University and the namesake of the bacterial genus Dickeya.

Thalassotalea is an aerobic and chemo-organo-heterotrophic genus of bacteria from the family Colwelliaceae which occur in the ocean and in sea ice.

Caldanaerobius is a genus of thermophilic, obligately anaerobic bacteria from the family of Thermoanaerobacteraceae.

Intrasporangium is a genus of Gram positive, nonmotile, endospore-forming bacteria. The genus name refers to the ability to form sporangia intercalary in the mycelial hyphae. The family Intrasporangiaceae is named after the genus, and Intrasporangium is the type genus for the family.

References

  1. Samson, R; Legendre, JB; Christen, R; Fischer-Le Saux, M; Achouak, W; Gardan, L (July 2005). "Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov". International Journal of Systematic and Evolutionary Microbiology. 55 (Pt 4): 1415–27. doi: 10.1099/ijs.0.02791-0 . PMID   16014461.
  2. Yamazaki, A; Li, J; Hutchins, WC; Wang, L; Ma, J; Ibekwe, AM; Yang, CH (January 2011). "Commensal effect of pectate lyases secreted from Dickeya dadantii on proliferation of Escherichia coli O157:H7 EDL933 on lettuce leaves". Applied and Environmental Microbiology. 77 (1): 156–62. doi:10.1128/AEM.01079-10. PMC   3019694 . PMID   21075884.
  3. Glasner, JD; Yang, CH; Reverchon, S; Hugouvieux-Cotte-Pattat, N; Condemine, G; Bohin, JP; Van Gijsegem, F; Yang, S; Franza, T; Expert, D; Plunkett G, 3rd; San Francisco, MJ; Charkowski, AO; Py, B; Bell, K; Rauscher, L; Rodriguez-Palenzuela, P; Toussaint, A; Holeva, MC; He, SY; Douet, V; Boccara, M; Blanco, C; Toth, I; Anderson, BD; Biehl, BS; Mau, B; Flynn, SM; Barras, F; Lindeberg, M; Birch, PR; Tsuyumu, S; Shi, X; Hibbing, M; Yap, MN; Carpentier, M; Dassa, E; Umehara, M; Kim, JF; Rusch, M; Soni, P; Mayhew, GF; Fouts, DE; Gill, SR; Blattner, FR; Keen, NT; Perna, NT (April 2011). "Genome sequence of the plant-pathogenic bacterium Dickeya dadantii 3937". Journal of Bacteriology. 193 (8): 2076–7. doi:10.1128/JB.01513-10. PMC   3133054 . PMID   21217001.
  4. 1 2 3 Parte, A.C. "Dickeya". LPSN .