Block and ash flow

Last updated
Outcrop of a block and ash flow in the Tschicoma Formation, New Mexico, US Block and ash flow Tschicoma.jpg
Outcrop of a block and ash flow in the Tschicoma Formation, New Mexico, US

A block and ash flow or block-and-ash flow is a flowing mixture of volcanic ash and large (>26 cm) angular blocks [1] commonly formed as a result of a gravitational collapse of a lava dome or lava flow. [2] Block and ash flows are a type of pyroclastic flow and as such they form during volcanic eruptions. [3] In contrast to other types of pyroclastic flows, block and ash flows do not contain pumice [4] and the volume of block and ash flow deposits is usually small. [2] Block and ash flow deposits have densities in the range of 1600 to 2000 kg/m3, two to five times greater than ash fall deposits. [2] Some blocks in block and ash flow deposits may have thin and shiny coatings of carbon derived from charcoal formed from vegetation trapped by the flow. [5]

Volcanoes known for their production of block and ash flows since the 1990s include Mount Unzen in Japan, Mount Merapi in Java and Soufrière Hills in the Lesser Antilles. [6]

Related Research Articles

<span class="mw-page-title-main">Volcano</span> Rupture in the crust of a planet that allows lava, ash, and gases to escape from below the surface

A volcano is a rupture in the crust of a planetary-mass object, such as Earth, that allows hot lava, volcanic ash, and gases to escape from a magma chamber below the surface.

<span class="mw-page-title-main">Stratovolcano</span> Type of conical volcano composed of layers of lava and tephra

A stratovolcano, also known as a composite volcano, is a conical volcano built up by many layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and periodic intervals of explosive eruptions and effusive eruptions, although some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and hardens before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica, with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but have travelled as far as 15 km (9 mi).

<span class="mw-page-title-main">Pyroclastic flow</span> Fast-moving current of hot gas and volcanic matter that moves away from a volcano

A pyroclastic flow is a fast-moving current of hot gas and volcanic matter that flows along the ground away from a volcano at average speeds of 100 km/h (30 m/s)(~62 mph) but is capable of reaching speeds up to 700 km/h (190 m/s)(~435 mph). The gases and tephra can reach temperatures of about 1,000 °C (1,800 °F).

<span class="mw-page-title-main">Volcanic cone</span> Landform of ejecta from a volcanic vent piled up in a conical shape

Volcanic cones are among the simplest volcanic landforms. They are built by ejecta from a volcanic vent, piling up around the vent in the shape of a cone with a central crater. Volcanic cones are of different types, depending upon the nature and size of the fragments ejected during the eruption. Types of volcanic cones include stratocones, spatter cones, tuff cones, and cinder cones.

<span class="mw-page-title-main">Lahar</span> Violent type of mudflow or debris flow from a volcano

A lahar is a violent type of mudflow or debris flow composed of a slurry of pyroclastic material, rocky debris and water. The material flows down from a volcano, typically along a river valley.

<span class="mw-page-title-main">Geology of the Lassen volcanic area</span> Geology of a U.S. national park in California

The Lassen volcanic area presents a geological record of sedimentation and volcanic activity in and around Lassen Volcanic National Park in Northern California, U.S. The park is located in the southernmost part of the Cascade Mountain Range in the Pacific Northwest region of the United States. Pacific Oceanic tectonic plates have plunged below the North American Plate in this part of North America for hundreds of millions of years. Heat and molten rock from these subducting plates has fed scores of volcanoes in California, Oregon, Washington and British Columbia over at least the past 30 million years, including these in the Lassen volcanic areas.

<span class="mw-page-title-main">Lassen Peak</span> Active volcano in California, United States

Lassen Peak, commonly referred to as Mount Lassen, is a lava dome volcano and the southernmost active volcano in the Cascade Range of the Western United States. Located in the Shasta Cascade region of Northern California, it is part of the Cascade Volcanic Arc, which stretches from southwestern British Columbia to northern California. Lassen Peak reaches an elevation of 10,457 ft (3,187 m), standing above the northern Sacramento Valley. It supports many flora and fauna among its diverse habitats, which are subject to frequent snowfall and reach high elevations.

<span class="mw-page-title-main">Pyroclastic rock</span> Clastic rocks composed solely or primarily of volcanic materials

Pyroclastic rocks are clastic rocks composed of rock fragments produced and ejected by explosive volcanic eruptions. The individual rock fragments are known as pyroclasts. Pyroclastic rocks are a type of volcaniclastic deposit, which are deposits made predominantly of volcanic particles. 'Phreatic' pyroclastic deposits are a variety of pyroclastic rock that forms from volcanic steam explosions and they are entirely made of accidental clasts. 'Phreatomagmatic' pyroclastic deposits are formed from explosive interaction of magma with groundwater.

<span class="mw-page-title-main">Mount Mazama</span> Complex volcano in the Cascade Range

Mount Mazama is a complex volcano in the state of Oregon, United States, in a segment of the Cascade Volcanic Arc and Cascade Range. Most of the mountain collapsed following a major eruption approximately 7,700 years ago. The volcano is in Klamath County, in the southern Cascades, 60 miles (97 km) north of the Oregon–California border. Its collapse, due to the eruption of magma emptying the underlying magma chamber, formed a caldera that holds Crater Lake. The mountain is in Crater Lake National Park. Mount Mazama originally had an elevation of 12,000 feet (3,700 m), but following its climactic eruption this was reduced to 8,157 feet (2,486 m). Crater Lake is 1,943 feet (592 m) deep, the deepest freshwater body in the US and the second deepest in North America after Great Slave Lake in Canada.

<span class="mw-page-title-main">Mount Unzen</span> Group of volcanoes in Nagasaki Prefecture, Japan

Mount Unzen is an active volcanic group of several overlapping stratovolcanoes, near the city of Shimabara, Nagasaki on the island of Kyushu, Japan's southernmost main island.

<span class="mw-page-title-main">Mount Asama</span> Complex volcano on the island of Honshū, Japan

Mount Asama is an active complex volcano in central Honshū, the main island of Japan. The volcano is the most active on Honshū. The Japan Meteorological Agency classifies Mount Asama as rank A. It stands 2,568 metres (8,425 ft) above sea level on the border of Gunma and Nagano prefectures. It is included in 100 Famous Japanese Mountains.

<span class="mw-page-title-main">Lava dome</span> Roughly circular protrusion from slowly extruded viscous volcanic lava

In volcanology, a lava dome is a circular, mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. Around 6% of eruptions on Earth are lava dome forming. The geochemistry of lava domes can vary from basalt to rhyolite although the majority are of intermediate composition The characteristic dome shape is attributed to high viscosity that prevents the lava from flowing very far. This high viscosity can be obtained in two ways: by high levels of silica in the magma, or by degassing of fluid magma. Since viscous basaltic and andesitic domes weather fast and easily break apart by further input of fluid lava, most of the preserved domes have high silica content and consist of rhyolite or dacite.

<span class="mw-page-title-main">Mount Merapi</span> Active stratovolcano in Central Java, Indonesia

Mount Merapi,, is an active stratovolcano located on the border between the province of Central Java and the Special Region of Yogyakarta, Indonesia. It is the most active volcano in Indonesia and has erupted regularly since 1548. It is located approximately 28 km (17 mi) north of Yogyakarta city which has a population of 2.4 million, and thousands of people live on the flanks of the volcano, with villages as high as 1,700 m (5,577 ft) above sea level.

The Decade Volcanoes are 16 volcanoes identified by the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) as being worthy of particular study in light of their history of large, destructive eruptions and proximity to densely populated areas. The Decade Volcanoes project encourages studies and public-awareness activities at these volcanoes, with the aim of achieving a better understanding of the volcanoes and the dangers they present, and thus being able to reduce the severity of natural disasters.

<span class="mw-page-title-main">Types of volcanic eruptions</span> Overview of different types of volcanic eruptions

Several types of volcanic eruptions—during which lava, tephra, and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

<span class="mw-page-title-main">Phreatomagmatic eruption</span> Volcanic eruption involving both steam and magma

Phreatomagmatic eruptions are volcanic eruptions resulting from interaction between magma and water. They differ from exclusively magmatic eruptions and phreatic eruptions. Unlike phreatic eruptions, the products of phreatomagmatic eruptions contain juvenile (magmatic) clasts. It is common for a large explosive eruption to have magmatic and phreatomagmatic components.

<span class="mw-page-title-main">2010 eruptions of Mount Merapi</span> Volcanic eruption of Mount Merapi in Indonesia

In late October 2010, Mount Merapi in border of Central Java and Special Region of Yogyakarta, Indonesia began an increasingly violent series of eruptions that continued into November. Seismic activity around the volcano increased from mid-September onwards, culminating in repeated outbursts of lava and ashes. Large eruption columns formed, causing numerous pyroclastic flows down the heavily populated slopes of the volcano. Merapi's eruption was the largest since the 1870s.

<span class="mw-page-title-main">Bridge River Vent</span>

The Bridge River Vent is a volcanic crater in the Pacific Ranges of the Coast Mountains in southwestern British Columbia, Canada. It is located 51 km (32 mi) west of Bralorne on the northeastern flank of the Mount Meager massif. With an elevation of 1,524 m (5,000 ft), it lies on the steep northern face of Plinth Peak, a 2,677 m (8,783 ft) high volcanic peak comprising the northern portion of Meager. The vent rises above the western shoulder of the Pemberton Valley and represents the northernmost volcanic feature of the Mount Meager massif.

The Semilir eruption was a major volcanic event which took place in Indonesia during the Early Miocene. This eruption formed the Semilir Formation and Nglanngran Formation. These two geological formations are in the Southern Mountains of East Java. The eruption created two formations which consist of mostly pyroclastic rock. It has incredible thickness. In contrast, The Toba supereruption only formed 600 m (2,000 ft) ignimbrite. The estimated Semilir eruption age date by isotope method is 21 million years ago.

<span class="mw-page-title-main">Mount Cayley</span> Mountains in British Columbia

Mount Cayley is an eroded but potentially active stratovolcano in the Pacific Ranges of southwestern British Columbia, Canada. Located 45 km (28 mi) north of Squamish and 24 km (15 mi) west of Whistler, the volcano resides on the edge of the Powder Mountain Icefield. It consists of massif that towers over the Cheakamus and Squamish river valleys. All major summits have elevations greater than 2,000 m (6,600 ft), Mount Cayley being the highest at 2,385 m (7,825 ft). The surrounding area has been inhabited by indigenous peoples for more than 7,000 years while geothermal exploration has taken place there for the last four decades.

References

  1. "Glossary - Block and ash flow". volcanoes.usgs.gov. United States Geological Survey . Retrieved 22 October 2018. Flow of ash and angular rock fragments larger than 26 cm or 10 in.
  2. 1 2 3 Pyle, David M. (2015). "Chapter 13 – Sizes of Volcanic Eruptions". In Sigurdsson, Haraldur (ed.). Encyclopedia of Volcanoes (2nd ed.). Amsterdam: Academic Press. pp. 257–264. ISBN   978-0-12-385938-9.
  3. Tahide, Ui; Matsuwo, Norimichi; Sumita, Marit; Fujinawa, Akihiko (1999). "Generation of block and ash flows during the 1990–1995 eruption of Unzen Volcano, Japan". Journal of Volcanology and Geothermal Research . 89 (1–4): 123–137. doi:10.1016/S0377-0273(98)00128-0.
  4. "Block-and-ash flow deposit or lithic breccia?". Sandsatlas. Retrieved October 22, 2018.
  5. Donoghue, E.; Troll, V.R.; Schwarzkopf, L.M.; Clayton, G.; Goodhue, R. (January 1, 2009). "Organic block coatings in block-and-ash flow deposits at Merapi Volcano, central Java". Geological Magazine . 146 (1): 113–120. doi:10.1017/S0016756808005359.
  6. "Block-and-ash flow deposits". Sandsatlas. Retrieved October 22, 2018.