In mathematics, the Bochner–Martinelli formula is a generalization of the Cauchy integral formula to functions of several complex variables, introduced by EnzoMartinelli ( 1938 ) and SalomonBochner ( 1943 ).
Formula (53) of the present paper and a proof of theorem 5 based on it have just been published by Enzo Martinelli (...). [1] The present author may be permitted to state that these results have been presented by him in a Princeton graduate course in Winter 1940/1941 and were subsequently incorporated, in a Princeton doctorate thesis (June 1941) by Donald C. May, entitled: An integral formula for analytic functions of k variables with some applications.
— Salomon Bochner, (Bochner 1943, p. 652, footnote 1).
However this author's claim in loc. cit. footnote 1, [2] that he might have been familiar with the general shape of the formula before Martinelli, was wholly unjustified and is hereby being retracted.
— Salomon Bochner, (Bochner 1947, p. 15, footnote *).
For ζ, z in the Bochner–Martinelli kernel ω(ζ,z) is a differential form in ζ of bidegree (n,n−1) defined by
(where the term dζj is omitted).
Suppose that f is a continuously differentiable function on the closure of a domain D in n with piecewise smooth boundary ∂D. Then the Bochner–Martinelli formula states that if z is in the domain D then
In particular if f is holomorphic the second term vanishes, so