Boeing Pad Abort Test

Last updated

Boe-PAT
CST-100 Starliner - Pad Abort Test,49013402052 f3852e9b3d o.jpg
Starliner fires its Abort Motors
Mission typeTechnology Demonstration
Operator
Mission duration1 minute, 19 seconds
Spacecraft properties
Spacecraft Boeing Starliner S1
Manufacturer Boeing
Start of mission
Launch date4 November 2019 14:15:00 UTC [1] [2]
Launch site White Sands Missile Range
End of mission
Landing date4 November 2019 14:16:19 UTC
Landing site White Sands Missile Range
Boeing Pad Abort Test.png  

The Boeing Pad Abort Test (also abbreviated to Boe-PAT) was a test of the Boeing CST-100 Starliner and its abort motors, conducted by Boeing as part of NASA's Commercial Crew Program. It was the first flight of Starliner and one of the last milestones ahead of OFT. The mission's main objective was to demonstrate that Starliner could safely pull a crew away from the pad in the event of an emergency prior to liftoff. [3]

Contents

After a successful launch, only two of three main parachutes deployed. [4] Despite this, NASA and Boeing deemed the test a success, as Starliner was designed to function on two parachutes if necessary.

History

In September 2011, Boeing announced the completion of a set of ground drop tests to validate the design of the airbag cushioning system. In May 2019, all major hotfire tests, were completed using full-up flight-capable service module hardware. This cleared the way for the pad abort test and the subsequent uncrewed and crewed flights. [3]

The pad abort test took place on 4 November 2019. [4] The abort motors fired nominally, followed by a clean service module separation. One of the three parachutes failed to deploy, and the capsule landed with only two parachutes. [5] The airbag cushion helped break the harder-than-expected fall, and the landing was deemed to be safe. NASA declared the test a success, and the malfunction of one parachute didn't affect the Starliner development schedule. [6] The malfunction was found to be human error. A pin meant to connect the pilot chute to the main chute was not properly connected. Therefore the pilot chute was not able to successfully deploy the main chute. Pre-flight inspections did not catch this error due to a protective covering. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Space capsule</span> Type of spacecraft

A space capsule is a spacecraft designed to transport cargo, scientific experiments, and/or astronauts to and from space. Capsules are distinguished from other spacecraft by the ability to survive reentry and return a payload to the Earth's surface from orbit, and are distinguished from other types of recoverable spacecraft by their blunt shape, not having wings and often containing little fuel other than what is necessary for a safe return. Capsule-based crewed spacecraft such as Soyuz or Orion are often supported by a service or adapter module, and sometimes augmented with an extra module for extended space operations. Capsules make up the majority of crewed spacecraft designs, although one crewed spaceplane, the Space Shuttle, has flown in orbit.

<span class="mw-page-title-main">Launch escape system</span> A system to get the crew to safety if a rocket launch fails

A launch escape system (LES) or launch abort system (LAS) is a crew-safety system connected to a space capsule. It is used in the event of a critical emergency to quickly separate the capsule from its launch vehicle in case of an emergency requiring the abort of the launch, such as an impending explosion. The LES is typically controlled by a combination of automatic rocket failure detection, and a manual activation for the crew commander's use. The LES may be used while the launch vehicle is still on the launch pad, or during its ascent. Such systems are usually of three types:

<span class="mw-page-title-main">New Shepard</span> Rocket developed by Blue Origin

New Shepard is a fully reusable sub-orbital launch vehicle developed for space tourism by Blue Origin. The vehicle is named after Alan Shepard, who became the first American to travel into space and the fifth person to walk on the Moon. The vehicle is capable of vertical takeoff and landings. Additionally, it is also capable of carrying humans and customer payloads into a sub-orbital trajectory.

A pad abort test is a kind of test of a launch escape system which conducted by setting the system along with the spacecraft still on the ground and let the system activate to carry the spacecraft flying away, then separate in the air and make the spacecraft land safely. The purpose of the test is to determine how well the system could get the crew of a spacecraft to safety in an emergency on the launch pad. As the spacecraft is set still on the ground, the test is also called "zero-altitude abort test" in against "high-altitude abort test".

<span class="mw-page-title-main">Boeing Starliner</span> Class of partially reusable crew capsules

The Boeing CST-100Starliner is a class of two partially reusable spacecraft designed to transport crew to the International Space Station (ISS) and other low-Earth-orbit destinations. It is manufactured by Boeing for its participation in NASA's Commercial Crew Program (CCP). The spacecraft consists of a reusable crew capsule and an expendable service module.

<span class="mw-page-title-main">Development of the Commercial Crew Program</span> NASA space program partnership with space companies

Development of the Commercial Crew Program began in the second round of the Commercial Crew Development (CCDev) program, which was rescoped from a technology development program for human spaceflight to a competitive development program that would produce the spacecraft to be used in the Commercial Crew Program to provide crew transportation services to and from the International Space Station (ISS). To implement the program NASA awarded a series of competitive fixed-price contracts to private vendors starting in 2011. Operational contracts to fly astronauts were awarded in September 2014 to SpaceX and Boeing, and NASA expected each company to complete development and achieve crew rating in 2017. Each company performed an uncrewed orbital test flight in 2019. SpaceX operational flights started in November 2020.

<span class="mw-page-title-main">Orion (spacecraft)</span> American–European spacecraft class for the Artemis program

Orion is a partially reusable crewed spacecraft used in NASA's Artemis program. The spacecraft consists of a Crew Module (CM) space capsule designed by Lockheed Martin and the European Service Module (ESM) manufactured by Airbus Defence and Space. Capable of supporting a crew of four beyond low Earth orbit, Orion can last up to 21 days undocked and up to six months docked. It is equipped with solar panels, an automated docking system, and glass cockpit interfaces modeled after those used in the Boeing 787 Dreamliner. A single AJ10 engine provides the spacecraft's primary propulsion, while eight R-4D-11 engines, and six pods of custom reaction control system engines developed by Airbus, provide the spacecraft's secondary propulsion. Orion is intended to launch atop a Space Launch System (SLS) rocket, with a tower launch escape system.

<span class="mw-page-title-main">RS-88</span> US ethanol-oxygen rocket engine

The RS-88 is a liquid-fueled rocket engine burning ethanol as fuel, and using liquid oxygen (LOX) as the oxidizer. It was designed and built by Rocketdyne, originally for the NASA Bantam System Technology program (1997).

<span class="mw-page-title-main">SpaceX Dragon 2</span> 2020s class of partially reusable spacecraft

Dragon 2 is a class of partially reusable spacecraft developed and manufactured by American aerospace manufacturer SpaceX, primarily for flights to the International Space Station (ISS). SpaceX also launches private missions, such as Inspiration4 and Axiom Mission 1. There are two variants of the Dragon spacecraft: Crew Dragon, a spacecraft capable of ferrying four crewmembers, and Cargo Dragon, a replacement for the original Dragon 1 used to carry freight to and from space. The spacecraft consists of a reusable space capsule and an expendable trunk module. The spacecraft launches atop a Falcon 9 Block 5 rocket and the capsule returns to Earth through splashdown.

<span class="mw-page-title-main">Boeing Orbital Flight Test</span> Uncrewed flight test of the Boeing Starliner spacecraft

The Boeing Starliner Orbital Flight Test was the first orbital mission of the CST-100 Starliner spacecraft, conducted by Boeing as part of NASA's Commercial Crew Program. The mission was planned to be an eight-day test flight of the spacecraft, involving a rendezvous and docking with the International Space Station (ISS), and a landing in the western United States. The mission was launched on 20 December 2019 at 11:36:43 UTC or 06:36:43 AM EST; however an issue with the spacecraft's Mission Elapsed Time (MET) clock occurred 31 minutes into flight. This anomaly caused the spacecraft to burn into an incorrect orbit, preventing a rendezvous with the International Space Station (ISS). The mission was reduced to just two days, with the spacecraft successfully landing at White Sands Space Harbor on 22 December 2019.

<span class="mw-page-title-main">Boeing Crewed Flight Test</span> Planned first crewed flight of Boeing Starliner

Boeing Crew Flight Test will be the first crewed mission of the Boeing Starliner and the third orbital flight test of the Starliner overall after the two uncrewed flight tests, OFT-1 and OFT-2 in 2019 and 2022.

<span class="mw-page-title-main">Crew Dragon In-Flight Abort Test</span> Post-launch abort test of the SpaceX Dragon 2 spacecraft

SpaceXCrew Dragon In-Flight Abort Test was a successful test of the SpaceX Dragon 2 abort system, conducted on 19 January 2020. It was the final assessment for the Crew Dragon capsule and Falcon 9 launch system before they would be certified to carry humans into space. Booster B1046.4 and an uncrewed capsule C205 were launched from Launch Complex 39A (LC-39A) on a suborbital trajectory, followed by an in-flight abort of the capsule at max Q and supersonic speed. The test was carried out successfully: the capsule pulled itself away from the booster after launch control commanded main engine shutdown and landed safely.

<span class="mw-page-title-main">Boeing Orbital Flight Test 2</span> Uncrewed flight test of the Boeing Starliner spacecraft

The Boeing Orbital Flight Test-2 was a repeat of Boeing's unsuccessful first Orbital Flight Test (OFT-1) of its Starliner spacecraft. The uncrewed mission was part of NASA's Commercial Crew Program. OFT-2, using Starliner Spacecraft 2, launched 19 May 2022 and lasted 6 days. Starliner successfully docked with the International Space Station (ISS) on 21 May 2022. It stayed at the ISS for 4 days before undocking and landing in the White Sands Missile Range on 25 May 2022.

<span class="mw-page-title-main">Next-generation crewed spacecraft</span> Chinese deep-space crewed spacecraft in development

The next-generation crewed spacecraft is a type of reusable spacecraft developed and manufactured by China Aerospace Science and Technology Corporation (CASC). The prototype of the spacecraft underwent its first uncrewed test flight on 5 May 2020.

<span class="mw-page-title-main">Commercial Crew Program</span> NASA human spaceflight program for the International Space Station

The Commercial Crew Program (CCP) provides commercially operated crew transportation service to and from the International Space Station (ISS) under contract to NASA, conducting crew rotations between the expeditions of the International Space Station program. American space manufacturer SpaceX began providing service in 2020, using the Crew Dragon spacecraft, and NASA plans to add Boeing when its Boeing Starliner spacecraft becomes operational no earlier than 2025. NASA has contracted for six operational missions from Boeing and fourteen from SpaceX, ensuring sufficient support for ISS through 2030.

<span class="mw-page-title-main">SpaceX Crew-2</span> 2021 American crewed spaceflight to the ISS

SpaceX Crew-2 was the second operational flight of a Crew Dragon spacecraft, and the third overall crewed orbital flight of the Commercial Crew Program. The mission was launched on 23 April 2021 at 09:49:02 UTC, and docked to the International Space Station on 24 April at 09:08 UTC.

<span class="mw-page-title-main">Crew Dragon Pad Abort Test</span>

The Crew Dragon Pad Abort Test was a spacecraft test conducted by SpaceX on 6 May 2015 from the Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. As part of the development of NASA's Commercial Crew Program, the test demonstrated the spacecraft's abort system capability, verifying the capsule's eight side-mounted SuperDraco thrusters' capability to quickly power itself away from a failing rocket while it is still on the ground. It was one of the two tests conducted by SpaceX on the abort system of spacecraft, the other one being the Crew Dragon In-Flight Abort Test conducted on 19 January 2020.

<span class="mw-page-title-main">Cargo Dragon C208</span> Uncrewed cargo capsule built by SpaceX

Dragon C208 is the first Cargo Dragon 2 spacecraft, and the first in a line of International Space Station resupply craft which replaced the Dragon capsule, manufactured by SpaceX. The mission is contracted by NASA under the Commercial Resupply Services (CRS) program. It flew for the first time on the CRS-21 mission on 6 December 2020. This was the first flight for SpaceX under NASA's CRS Phase 2 contract awarded in January 2016. This was also the first time a Cargo Dragon was docked at the same time as a Crew Dragon spacecraft. This mission used Booster B1058.4.

Boeing Starliner Spacecraft 2 Boeing Starliner spacecraft

Boeing Starliner Spacecraft 2 is the first of two active Boeing CST-100 Starliner spacecraft developed and built under NASA's Commercial Crew Program. The spacecraft was originally scheduled to make its maiden flight on Boe-CFT, the first crewed flight test of the Starliner spacecraft, although following the partial failure of the other CST-100 on Boe-OFT which required a repeat uncrewed test (Boe-OFT-2) of the spacecraft to be scheduled, spacecraft 2 was reassigned to Boe-OFT-2 and also scheduled to fly Starliner-1 after being reassigned from CFT mission.

References

  1. Clark, Stephen (3 December 2019). "Launch of first Starliner orbital test flight slips to Dec. 19". Spaceflight Now. Retrieved 3 December 2019.
  2. Clark, Stephen. "Live coverage: Starliner lands in New Mexico – Spaceflight Now".
  3. 1 2 "Boeing's Starliner crew capsule completes major propulsion test – Spaceflight Now".
  4. 1 2 "Boeing tests crew capsule escape system – Spaceflight Now". spaceflightnow.com. Retrieved 4 November 2019.
  5. "Starliner flies for the first time, but one of its parachutes failed to deploy". 4 November 2019.
  6. Clark, Stephen. "Boeing tests crew capsule escape system – Spaceflight Now".
  7. Clark, Stephen. "Boeing identifies cause of chute malfunction, preps for Starliner launch – Spaceflight Now" . Retrieved 24 June 2020.