Booth's multiplication algorithm

Last updated

Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer architecture.

Contents

The algorithm

Booth's algorithm examines adjacent pairs of bits of the 'N'-bit multiplier Y in signed two's complement representation, including an implicit bit below the least significant bit, y−1 = 0. For each bit yi, for i running from 0 to N − 1, the bits yi and yi−1 are considered. Where these two bits are equal, the product accumulator P is left unchanged. Where yi = 0 and yi−1 = 1, the multiplicand times 2i is added to P; and where yi = 1 and yi−1 = 0, the multiplicand times 2i is subtracted from P. The final value of P is the signed product.

The representations of the multiplicand and product are not specified; typically, these are both also in two's complement representation, like the multiplier, but any number system that supports addition and subtraction will work as well. As stated here, the order of the steps is not determined. Typically, it proceeds from LSB to MSB, starting at i = 0; the multiplication by 2i is then typically replaced by incremental shifting of the P accumulator to the right between steps; low bits can be shifted out, and subsequent additions and subtractions can then be done just on the highest N bits of P. [2] There are many variations and optimizations on these details.

The algorithm is often described as converting strings of 1s in the multiplier to a high-order +1 and a low-order −1 at the ends of the string. When a string runs through the MSB, there is no high-order +1, and the net effect is interpretation as a negative of the appropriate value.

A typical implementation

A Walther WSR160 arithmometer from 1960. Each turn of the crank handle adds (up) or subtracts (down) the operand set to the top register from the value in the accumulator register at the bottom. Shifting the adder left or right multiplies the effect by ten. Calculator walther hg.jpg
A Walther WSR160 arithmometer from 1960. Each turn of the crank handle adds (up) or subtracts (down) the operand set to the top register from the value in the accumulator register at the bottom. Shifting the adder left or right multiplies the effect by ten.

Booth's algorithm can be implemented by repeatedly adding (with ordinary unsigned binary addition) one of two predetermined values A and S to a product P, then performing a rightward arithmetic shift on P. Let m and r be the multiplicand and multiplier, respectively; and let x and y represent the number of bits in m and r.

  1. Determine the values of A and S, and the initial value of P. All of these numbers should have a length equal to (x + y + 1).
    1. A: Fill the most significant (leftmost) bits with the value of m. Fill the remaining (y + 1) bits with zeros.
    2. S: Fill the most significant bits with the value of (m) in two's complement notation. Fill the remaining (y + 1) bits with zeros.
    3. P: Fill the most significant x bits with zeros. To the right of this, append the value of r. Fill the least significant (rightmost) bit with a zero.
  2. Determine the two least significant (rightmost) bits of P.
    1. If they are 01, find the value of P + A. Ignore any overflow.
    2. If they are 10, find the value of P + S. Ignore any overflow.
    3. If they are 00, do nothing. Use P directly in the next step.
    4. If they are 11, do nothing. Use P directly in the next step.
  3. Arithmetically shift the value obtained in the 2nd step by a single place to the right. Let P now equal this new value.
  4. Repeat steps 2 and 3 until they have been done y times.
  5. Drop the least significant (rightmost) bit from P. This is the product of m and r.

Example

Find 3 × (4), with m = 3 and r = 4, and x = 4 and y = 4:

The above-mentioned technique is inadequate when the multiplicand is the most negative number that can be represented (e.g. if the multiplicand has 4 bits then this value is 8). This is because then an overflow occurs when computing -m, the negation of the multiplicand, which is needed in order to set S. One possible correction to this problem is to extend A, S, and P by one bit each, while they still represent the same number. That is, while 8 was previously represented in four bits by 1000, it is now represented in 5 bits by 1 1000. This then follows the implementation described above, with modifications in determining the bits of A and S; e.g., the value of m, originally assigned to the first x bits of A, will be now be extended to x+1 bits and assigned to the first x+1 bits of A. Below, the improved technique is demonstrated by multiplying 8 by 2 using 4 bits for the multiplicand and the multiplier:

How it works

Consider a positive multiplier consisting of a block of 1s surrounded by 0s. For example, 00111110. The product is given by:

where M is the multiplicand. The number of operations can be reduced to two by rewriting the same as

In fact, it can be shown that any sequence of 1s in a binary number can be broken into the difference of two binary numbers:

Hence, the multiplication can actually be replaced by the string of ones in the original number by simpler operations, adding the multiplier, shifting the partial product thus formed by appropriate places, and then finally subtracting the multiplier. It is making use of the fact that it is not necessary to do anything but shift while dealing with 0s in a binary multiplier, and is similar to using the mathematical property that 99 = 100  1 while multiplying by 99.

This scheme can be extended to any number of blocks of 1s in a multiplier (including the case of a single 1 in a block). Thus,

Booth's algorithm follows this old scheme by performing an addition when it encounters the first digit of a block of ones (0 1) and subtraction when it encounters the end of the block (1 0). This works for a negative multiplier as well. When the ones in a multiplier are grouped into long blocks, Booth's algorithm performs fewer additions and subtractions than the normal multiplication algorithm.

See also

Related Research Articles

<span class="mw-page-title-main">Multiplication</span> Arithmetical operation

Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division. The result of a multiplication operation is called a product.

A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal numeral system.

A binary number is a number expressed in the base-2 numeral system or binary numeral system, a method of mathematical expression which uses only two symbols: typically "0" (zero) and "1" (one).

In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor. Most bitwise operations are presented as two-operand instructions where the result replaces one of the input operands.

Two's complement is the most common method of representing signed integers on computers, and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest place value as the sign to indicate whether the binary number is positive or negative. When the most significant bit is 1, the number is signed as negative; and when the most significant bit is 0 the number is signed as positive.

In mathematics, finite field arithmetic is arithmetic in a finite field contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers.

Reed–Muller codes are error-correcting codes that are used in wireless communications applications, particularly in deep-space communication. Moreover, the proposed 5G standard relies on the closely related polar codes for error correction in the control channel. Due to their favorable theoretical and mathematical properties, Reed–Muller codes have also been extensively studied in theoretical computer science.

A division algorithm is an algorithm which, given two integers N and D, computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software.

In mathematics, ancient Egyptian multiplication, one of two multiplication methods used by scribes, is a systematic method for multiplying two numbers that does not require the multiplication table, only the ability to multiply and divide by 2, and to add. It decomposes one of the multiplicands into a set of numbers of powers of two and then creates a table of doublings of the second multiplicand by every value of the set which is summed up to give result of multiplication.

The Dadda multiplier is a hardware binary multiplier design invented by computer scientist Luigi Dadda in 1965. It uses a selection of full and half adders to sum the partial products in stages until two numbers are left. The design is similar to the Wallace multiplier, but the different reduction tree reduces the required number of gates and makes it slightly faster.

In computer science, a scale factor is a number used as a multiplier to represent a number on a different scale, functioning similarly to an exponent in mathematics. A scale factor is used when a real-world set of numbers needs to be represented on a different scale in order to fit a specific number format. Although using a scale factor extends the range of representable values, it also decreases the precision, resulting in rounding error for certain calculations.

A carry-save adder is a type of digital adder, used to efficiently compute the sum of three or more binary numbers. It differs from other digital adders in that it outputs two numbers, and the answer of the original summation can be achieved by adding these outputs together. A carry save adder is typically used in a binary multiplier, since a binary multiplier involves addition of more than two binary numbers after multiplication. A big adder implemented using this technique will usually be much faster than conventional addition of those numbers.

A binary multiplier is an electronic circuit used in digital electronics, such as a computer, to multiply two binary numbers.

In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. It is also known as the shift-and-add-3 algorithm, and can be implemented using a small number of gates in computer hardware, but at the expense of high latency.

Kochanski multiplication is an algorithm that allows modular arithmetic to be performed efficiently when the modulus is large. This has particular application in number theory and in cryptography: for example, in the RSA cryptosystem and Diffie–Hellman key exchange.

<span class="mw-page-title-main">Fast inverse square root</span> Root-finding algorithm

Fast inverse square root, sometimes referred to as Fast InvSqrt or by the hexadecimal constant 0x5F3759DF, is an algorithm that estimates , the reciprocal of the square root of a 32-bit floating-point number in IEEE 754 floating-point format. The algorithm is best known for its implementation in 1999 in Quake III Arena, a first-person shooter video game heavily based on 3D graphics. With subsequent hardware advancements, especially the x86 SSE instruction rsqrtss, this algorithm is not generally the best choice for modern computers, though it remains an interesting historical example.

Single-precision floating-point format is a computer number format, usually occupying 32 bits in computer memory; it represents a wide dynamic range of numeric values by using a floating radix point.

Reduction of summands is an algorithm for fast binary multiplication of non-signed binary integers. It is performed in three steps: production of summands, reduction of summands, and summation.

The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number. This mathematical operation is primarily of interest in computer science, where it has varying effects depending on how a specific computer represents numbers.

In the C programming language, operations can be performed on a bit level using bitwise operators.

References

  1. Booth, Andrew Donald (1951) [1950-08-01]. "A Signed Binary Multiplication Technique" (PDF). The Quarterly Journal of Mechanics and Applied Mathematics. IV (2): 236–240. Archived (PDF) from the original on 16 July 2018. Retrieved 16 July 2018. Reprinted in Booth, Andrew Donald. A Signed Binary Multiplication Technique. Oxford University Press. pp. 100–104.
  2. Chen, Chi-hau (1992). Signal processing handbook. CRC Press. p. 234. ISBN   978-0-8247-7956-6.

Further reading