Bootstrap curriculum

Last updated

Bootstrap is based at Brown University (USA), and builds on the research and development done there. Bootstrap curriculum consists of 4 research-based curricular computer science modules for grades 6-12. The 4 modules are Bootstrap:Algebra, Bootstrap:Reactive, Bootstrap:Data Science, and Bootstrap:Physics. Bootstrap materials reinforce core concepts from mainstream subjects like Math, Physics and more, enabling non-CS teachers to adopt the introductory materials while delivering rigorous and engaging computing content drawn from Computer Science classes at universities like Brown, WPI, and Northeastern.

Contents

Bootstrap:Algebra is the flagship curriculum for students ages 12–16, teaching algebraic concepts through coding. By the end of the curriculum, each student has designed their own video game using the concepts (e.g. - order of operations, linear functions, function composition, the pythagorean theorem, inequalities in the plane, piecewise functions, and more).

Their mission is to take students' excitement around gaming and drive it towards mathematics and computer programming. Beyond simply expanding students’ interest in math, Bootstrap:Algebra is among the first curricula to demonstrate real improvement in students' algebra performance. [1] [2]

Bootstrap:Algebra can be integrated into a standalone CS or mainstream math class, and aligns with national and state math standards. And since every child takes algebra - regardless of gender or background - Bootstrap is one of the largest providers of formal CS education to girls and underrepresented students nationwide.

The other modules model physics, data science, and sophisticated interactive programs, and can be integrated into Social Studies, Science, Math, Intro and even AP CS Principles courses. Teachers can mix-and-match content across various modules to fit their needs.

Bootstrap works with schools, districts and organizations across the United States, reaching hundreds of teachers and tens of thousands of students [3] [4] since its foundation in 2006. Workshops are also offered throughout the country, where teachers receive specialized training to deliver the class.

Curriculum

The Bootstrap curriculum consists of four modules, Bootstrap:Algebra, Bootstrap:Reactive, Bootstrap:Data Science, and Bootstrap:Physics.

Bootstrap:Algebra

Bootstrap:Algebra is a 25+ hour curricular module that applies mathematical concepts and rigorous programming principles to creating a simple videogame, and is aligned to National and State Standards for Mathematics, as well as the CSTA standards and K12CS frameworks. Students create a simple, 3-character game involving a player, a target and a danger. They design what each character looks like, and use algebraic concepts to detect collisions, handle keystrokes, and determine how they move and interact.

The primary concepts covered are:

Mathematics

Programming

Bootstrap:Reactive

In Bootstrap:Reactive, students learn more about what makes the game they designed in Bootstrap:Algebra work. Using data structures, students animate their games and devise a world structure to create a more sophisticated game.

The primary concepts covered are:

Mathematics

Programming

Bootstrap:Data Science

Bootstrap:Data Science Bootstrap DATA SCIENCE Logo FINAL.png
Bootstrap:Data Science

In Bootstrap:Data Science, students form their own questions about the world around them, analyze data using multiple methods, and write a research paper about their findings. The module covers functions, looping and iteration, data visualization, linear regression, and much more. Social studies, science, and business teachers can utilize this module to help students make inferences from data. Math teachers can use this module to introduce foundational concepts in statistics, and it is aligned to the Data standards in CS Principles.

The primary concepts covered are:

Mathematics

Programming

Computational Modeling in Physics with Bootstrap

The Bootstrap:Physics module is developed in partnership with the American Association of Physics Teachers, the American Modeling Teachers Association, and STEM Teachers NYC. This module helps students understand basic physics concepts by incorporating computer programming as one of the key tools for building models of the physical world. The module is targeted at ninth grade, a year in which every student is expected to take science. The module is aligned to the Physics First course, allowing teachers to easily embed computational modeling in their physics classes.

Toolset

Bootstrap:Algebra is taught in the teaching subsets of the Racket programming language, and Bootstrap:Reactive, Bootstrap: Data Science, and Bootstrap:Physics move students to Pyret. Both are functional languages, meaning they behave algebraically and so are well-suited to a math class. Bootstrap students primarily use cloud-based programming environments--WeScheme for Bootstrap:Algebra and code.pyret.org for Bootstrap:Reactive, Bootstraps:Data Science, and Bootstrap:Physics. Teachers may download DrRacket for offline use with either language. [5]

History

In 2005, Emmanuel Schanzer wrote the first version of the Bootstrap curriculum, adapting many of the ideas from the celebrated Program by Design curriculum for use in the context of an 8th grade math class, and inventing a number of teaching techniques (most notably the “Circles of Evaluation”). In 2006, Bootstrap was joined by Kathi Fisler and Shriram Krishnamurthi, both professors of computer science. It was piloted through a 10-week after-school program, but after its initial success, Bootstrap found its way into standard math classes all over the country. [6]

Reception

Over the last decade, Bootstrap has focused on research into learning outcomes, in contrast to other, advocacy focused efforts. In April 2015, Bootstrap received funding from Google in conjunction with CSNYC. [7] In September 2015, Bootstrap was chosen as the math component of NYC's CS4All initiative. [8] In October 2015, Bootstrap was awarded a $1.5 million grant from the National Science Foundation, which will help fine-tune the program and make it even more widespread in schools across the country. [9] Code.org uses some of Bootstrap’s elements in their own curriculum, and engineers from Google, Apple, Facebook, TripAdvisor, and Cisco have all used Bootstrap to teach students in their communities.

Related Research Articles

A computer algebra system (CAS) or symbolic algebra system (SAS) is any mathematical software with the ability to manipulate mathematical expressions in a way similar to the traditional manual computations of mathematicians and scientists. The development of the computer algebra systems in the second half of the 20th century is part of the discipline of "computer algebra" or "symbolic computation", which has spurred work in algorithms over mathematical objects such as polynomials.

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

<span class="mw-page-title-main">Mathematics education</span> Mathematics teaching, learning and scholarly research

In contemporary education, mathematics education—known in Europe as the didactics or pedagogy of mathematics—is the practice of teaching, learning, and carrying out scholarly research into the transfer of mathematical knowledge.

<span class="mw-page-title-main">Graphing calculator</span> Electronic calculator capable of plotting graphs

A graphing calculator is a handheld computer that is capable of plotting graphs, solving simultaneous equations, and performing other tasks with variables. Most popular graphing calculators are programmable calculators, allowing the user to create customized programs, typically for scientific, engineering or education applications. They have large screens that display several lines of text and calculations.

<span class="mw-page-title-main">New Math</span> Approach to teaching mathematics in the 1960s

New Mathematics or New Math was a dramatic but temporary change in the way mathematics was taught in American grade schools, and to a lesser extent in European countries and elsewhere, during the 1950s–1970s.

Principles and Standards for School Mathematics (PSSM) are guidelines produced by the National Council of Teachers of Mathematics (NCTM) in 2000, setting forth recommendations for mathematics educators. They form a national vision for preschool through twelfth grade mathematics education in the US and Canada. It is the primary model for standards-based mathematics.

Founded in 1920, The National Council of Teachers of Mathematics (NCTM) is a professional organization for schoolteachers of mathematics in the United States. One of its goals is to improve the standards of mathematics in education. NCTM holds annual national and regional conferences for teachers and publishes five journals.

Physics First is an educational program in the United States, that teaches a basic physics course in the ninth grade, rather than the biology course which is more standard in public schools. This course relies on the limited math skills that the students have from pre-algebra and algebra I. With these skills students study a broad subset of the introductory physics canon with an emphasis on topics which can be experienced kinesthetically or without deep mathematical reasoning. Furthermore, teaching physics first is better suited for English Language Learners, who would be overwhelmed by the substantial vocabulary requirements of Biology.

<span class="mw-page-title-main">Bergen County Technical High School, Teterboro Campus</span> High school in Bergen County, New Jersey, United States

Bergen County Technical High School, also known as Bergen Tech (BT), is a four-year, tuition-free public magnet high school located in Teterboro, New Jersey serving students in ninth through twelfth grades in Bergen County, in the U.S. state of New Jersey. Bergen Tech is part of the Bergen County Technical Schools, a countywide district that also includes Bergen County Academies in Hackensack, Applied Technology in Paramus, and Bergen Tech in Paramus. The school is nationally recognized, as students have the opportunity to be engaged in a technical major while fulfilling college preparatory classes and having the opportunity to take a wide variety of electives.

Saxon math, developed by John Saxon (1923–1996), is a teaching method for incremental learning of mathematics created in the 1980s. It involves teaching a new mathematical concept every day and constantly reviewing old concepts. Early editions were deprecated for providing very few opportunities to practice the new material before plunging into a review of all previous material. Newer editions typically split the day's work evenly between practicing the new material and reviewing old material. It uses a steady review of all previous material, with a focus on students who struggle with retaining the math they previously learned. However, it has sometimes been criticized for its heavy emphasis on rote rather than conceptual learning.

<span class="mw-page-title-main">Racket (programming language)</span> Lisp dialect

Racket is a general-purpose, multi-paradigm programming language and a multi-platform distribution that includes the Racket language, compiler, large standard library, IDE, development tools, and a set of additional languages including Typed Racket, Swindle, FrTime, Lazy Racket, R5RS & R6RS Scheme, Scribble, Datalog, Racklog, Algol 60 and several teaching languages.

The ProgramByDesign project is an outreach effort of the PLT research group. The goal is to train college faculty, high school teachers, and possibly even middle school teachers, in programming and computing.

<span class="mw-page-title-main">Time Squared Academy</span> Public charter school in Providence, Rhode Island, United States

Times2 STEM Academy is a charter school in Providence, Rhode Island that specializes in teaching science, technology, engineering, and mathematics.

<span class="mw-page-title-main">Core-Plus Mathematics Project</span> High school mathematics program

Core-Plus Mathematics is a high school mathematics program consisting of a four-year series of print and digital student textbooks and supporting materials for teachers, developed by the Core-Plus Mathematics Project (CPMP) at Western Michigan University, with funding from the National Science Foundation. Development of the program started in 1992. The first edition, entitled Contemporary Mathematics in Context: A Unified Approach, was completed in 1995. The third edition, entitled Core-Plus Mathematics: Contemporary Mathematics in Context, was published by McGraw-Hill Education in 2015.

<span class="mw-page-title-main">Bradley Efron</span> American statistician

Bradley Efron is an American statistician. Efron has been president of the American Statistical Association (2004) and of the Institute of Mathematical Statistics (1987–1988). He is a past editor of the Journal of the American Statistical Association, and he is the founding editor of the Annals of Applied Statistics. Efron is also the recipient of many awards.

<span class="mw-page-title-main">Mathematics education in the United States</span> Overview of mathematics education in the United States

Mathematics education in the United States varies considerably from one state to the next, and even within a single state. However, with the adoption of the Common Core Standards in most states and the District of Columbia beginning in 2010, mathematics content across the country has moved into closer agreement for each grade level. The SAT, a standardized university entrance exam, has been reformed to better reflect the contents of the Common Core. However, many students take alternatives to the traditional pathways, including accelerated tracks. As of 2023, twenty-seven states require students to pass three math courses before graduation from high school, while seventeen states and the District of Columbia require four. A typical sequence of secondary-school courses in mathematics reads: Pre-Algebra, Algebra I, Geometry, Algebra II, Pre-calculus, and Calculus or Statistics. However, some students enroll in integrated programs while many complete high school without passing Calculus or Statistics. At the other end, counselors at competitive public or private high schools usually encourage talented and ambitious students to take Calculus regardless of future plans in order to increase their chances of getting admitted to a prestigious university and their parents enroll them in enrichment programs in mathematics.

Statistics education is the practice of teaching and learning of statistics, along with the associated scholarly research.

Bootstrapping is a self-starting process that is supposed to proceed without external input.

The Secondary School Mathematics Curriculum Improvement Study (SSMCIS) was the name of an American mathematics education program that stood for both the name of a curriculum and the name of the project that was responsible for developing curriculum materials. It is considered part of the second round of initiatives in the "New Math" movement of the 1960s. The program was led by Howard F. Fehr, a professor at Columbia University Teachers College.

EarSketch is a free educational programming environment. Its core purpose is to teach coding in two widely used languages, Python and JavaScript, through music composing and remixing. This learning environment was developed first at Georgia Institute of Technology, under Prof. Jason Freeman and Prof. Brian Magerko.

References

  1. "Bootstrap Showcase (Utah) - TeacherTube". TeacherTube. Retrieved 2015-11-16.[ verification needed ]
  2. "Volunteers teaching algebra through computer coding".[ verification needed ]
  3. "Bootstrap Showcase (Utah) - TeacherTube". TeacherTube. Retrieved 2015-11-16.
  4. "Volunteers teaching algebra through computer coding".
  5. "Bootstrap Materials". Bootstrap.org. Bootstrap. Retrieved 2015-08-11.
  6. "Students 'bootstrap' algebra from video games | News from Brown". news.brown.edu. Retrieved 2015-11-16.
  7. "CSNYC Receives Google/Tides Foundation Funding for Bootstrap | CSNYC.org". www.csnyc.org. Retrieved 2015-11-16.
  8. Taylor, Kate; Miller, Claire Cain (2015-09-15). "De Blasio to Announce 10-Year Deadline to Offer Computer Science to All Students". The New York Times. ISSN   0362-4331 . Retrieved 2015-11-16.
  9. "'Bootstrap' math/computer science curriculum gets $1.5M from NSF | News from Brown". news.brown.edu. Retrieved 2015-11-16.