In finance, bootstrapping is a method for constructing a (zero-coupon) fixed-income yield curve from the prices of a set of coupon-bearing products, e.g. bonds and swaps. [1]
A bootstrapped curve, correspondingly, is one where the prices of the instruments used as an input to the curve, will be an exact output, when these same instruments are valued using this curve. Here, the term structure of spot returns is recovered from the bond yields by solving for them recursively, by forward substitution: this iterative process is called the bootstrap method.
The usefulness of bootstrapping is that using only a few carefully selected zero-coupon products, it becomes possible to derive par swap rates (forward and spot) for all maturities given the solved curve.
Analytic Example: Given: 0.5-year spot rate, Z1 = 4%, and 1-year spot rate, Z2 = 4.3% (we can get these rates from T-Bills which are zero-coupon); and the par rate on a 1.5-year semi-annual coupon bond, R3 = 4.5%. We then use these rates to calculate the 1.5 year spot rate. We solve the 1.5 year spot rate, Z3, by the formula below: is 4.51%. |
As stated above, the selection of the input securities is important, given that there is a general lack of data points in a yield curve (there are only a fixed number of products in the market). More importantly, because the input securities have varying coupon frequencies, the selection of the input securities is critical. It makes sense to construct a curve of zero-coupon instruments from which one can price any yield, whether forward or spot, without the need of more external information. [2] Note that certain assumptions (e.g. the interpolation method) will always be required.
The general methodology is as follows: (1) Define the set of yielding products - these will generally be coupon-bearing bonds; (2) Derive discount factors for the corresponding terms - these are the internal rates of return of the bonds; (3) 'Bootstrap' the zero-coupon curve, successively calibrating this curve such that it returns the prices of the inputs. A generically stated algorithm for the third step is as follows; for more detail see Yield curve § Construction of the full yield curve from market data.
For each input instrument, proceeding through these in terms of increasing maturity:
When solved as described here, the curve will be arbitrage free in the sense that it is exactly consistent with the selected prices; see Rational pricing § Fixed income securities and Bond valuation § Arbitrage-free pricing approach. Note that some analysts will instead construct the curve such that it results in a best-fit "through" the input prices, as opposed to an exact match, using a method such as Nelson-Siegel.
Regardless of approach, however, there is a requirement that the curve be arbitrage-free in a second sense: that all forward rates are positive. More sophisticated methods for the curve construction — whether targeting an exact- or a best-fit — will additionally target curve "smoothness" [ broken anchor ] as an output, [3] [4] and the choice of interpolation method here, for rates not directly specified, will then be important.
A more detailed description of the forward substitution is as follows. For each stage of the iterative process, we are interested in deriving the n-year zero-coupon bond yield, also known as the internal rate of return of the zero-coupon bond. As there are no intermediate payments on this bond, (all the interest and principal is realized at the end of n years) it is sometimes called the n-year spot rate. To derive this rate we observe that the theoretical price of a bond can be calculated as the present value of the cash flows to be received in the future. In the case of swap rates, we want the par bond rate (Swaps are priced at par when created) and therefore we require that the present value of the future cash flows and principal be equal to 100%.
therefore
(this formula is precisely forward substitution)
After the financial crisis of 2007–2008 swap valuation is typically under a "multi-curve and collateral" framework; the above, by contrast, describes the "self discounting" approach.
Under the new framework, when valuing a Libor-based swap: (i) the forecasted cashflows are derived from the Libor-curve, (ii) however, these cashflows are discounted at the OIS-based curve's overnight rate, as opposed to at Libor. The result is that, in practice, curves are built as a "set" and not individually, where, correspondingly: (i) "forecast curves" are constructed for each floating-leg Libor tenor; and (ii) discounting is on a single, common OIS curve which must simultaneously be constructed.
The reason for the change is that, post-crisis, the overnight rate is the rate paid on the collateral (variation margin) posted by counterparties on most CSAs. The forward values of the overnight rate can be read from the overnight index swap curve. "OIS-discounting" is now standard, and is sometimes, referred to as "CSA-discounting".
See: Financial economics § Derivative pricing for context; Interest rate swap § Valuation and pricing for the math.
In finance, discounting is a mechanism in which a debtor obtains the right to delay payments to a creditor, for a defined period of time, in exchange for a charge or fee. Essentially, the party that owes money in the present purchases the right to delay the payment until some future date. This transaction is based on the fact that most people prefer current interest to delayed interest because of mortality effects, impatience effects, and salience effects. The discount, or charge, is the difference between the original amount owed in the present and the amount that has to be paid in the future to settle the debt.
The time value of money refers to the fact that there is normally a greater benefit to receiving a sum of money now rather than an identical sum later. It may be seen as an implication of the later-developed concept of time preference.
In finance, an interest rate swap (IRS) is an interest rate derivative (IRD). It involves exchange of interest rates between two parties. In particular it is a "linear" IRD and one of the most liquid, benchmark products. It has associations with forward rate agreements (FRAs), and with zero coupon swaps (ZCSs).
In mathematical finance, the Greeks are the quantities representing the sensitivity of the price of a derivative instrument such as an option to changes in one or more underlying parameters on which the value of an instrument or portfolio of financial instruments is dependent. The name is used because the most common of these sensitivities are denoted by Greek letters. Collectively these have also been called the risk sensitivities, risk measures or hedge parameters.
In finance, a spot contract, spot transaction, or simply spot, is a contract of buying or selling a commodity, security or currency for immediate settlement on the spot date, which is normally two business days after the trade date. The settlement price is called spot price. A spot contract is in contrast with a forward contract or futures contract where contract terms are agreed now but delivery and payment will occur at a future date.
In finance, the yield curve is a graph which depicts how the yields on debt instruments – such as bonds – vary as a function of their years remaining to maturity. Typically, the graph's horizontal or x-axis is a time line of months or years remaining to maturity, with the shortest maturity on the left and progressively longer time periods on the right. The vertical or y-axis depicts the annualized yield to maturity.
Rational pricing is the assumption in financial economics that asset prices – and hence asset pricing models – will reflect the arbitrage-free price of the asset as any deviation from this price will be "arbitraged away". This assumption is useful in pricing fixed income securities, particularly bonds, and is fundamental to the pricing of derivative instruments.
In economics, diminishing returns are the decrease in marginal (incremental) output of a production process as the amount of a single factor of production is incrementally increased, holding all other factors of production equal. The law of diminishing returns states that in productive processes, increasing a factor of production by one unit, while holding all other production factors constant, will at some point return a lower unit of output per incremental unit of input. The law of diminishing returns does not cause a decrease in overall production capabilities, rather it defines a point on a production curve whereby producing an additional unit of output will result in a loss and is known as negative returns. Under diminishing returns, output remains positive, but productivity and efficiency decrease.
Bond valuation is the process by which an investor arrives at an estimate of the theoretical fair value, or intrinsic worth, of a bond. As with any security or capital investment, the theoretical fair value of a bond is the present value of the stream of cash flows it is expected to generate. Hence, the value of a bond is obtained by discounting the bond's expected cash flows to the present using an appropriate discount rate.
In finance, the duration of a financial asset that consists of fixed cash flows, such as a bond, is the weighted average of the times until those fixed cash flows are received. When the price of an asset is considered as a function of yield, duration also measures the price sensitivity to yield, the rate of change of price with respect to yield, or the percentage change in price for a parallel shift in yields.
In finance, bond convexity is a measure of the non-linear relationship of bond prices to changes in interest rates, and is defined as the second derivative of the price of the bond with respect to interest rates. In general, the higher the duration, the more sensitive the bond price is to the change in interest rates. Bond convexity is one of the most basic and widely used forms of convexity in finance. Convexity was based on the work of Hon-Fei Lai and popularized by Stanley Diller.
Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes. This is usually done by help of stochastic asset models. The advantage of Monte Carlo methods over other techniques increases as the dimensions of the problem increase.
The forward rate is the future yield on a bond. It is calculated using the yield curve. For example, the yield on a three-month Treasury bill six months from now is a forward rate.
In quantitative finance, a lattice model is a mathematical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options, a typical application would correspond to the pricing of an American-style option, where a decision to exercise is allowed at any time up to the maturity. A continuous model, on the other hand, such as the standard Black–Scholes one, would only allow for the valuation of European options, where exercise is limited to the option's maturity date. For interest rate derivatives lattices are additionally useful in that they address many of the issues encountered with continuous models, such as pull to par. The method is also used for valuing certain exotic options, because of path dependence in the payoff. Traditional Monte Carlo methods for option pricing fail to account for optimal decisions to terminate the derivative by early exercise, but some methods now exist for solving this problem.
The Z-spread, ZSPRD, zero-volatility spread, or yield curve spread of a bond is the parallel shift or spread over the zero-coupon Treasury yield curve required for discounting a predetermined cash flow schedule to arrive at its present market price. The Z-spread is also widely used in the credit default swap (CDS) market as a measure of credit spread that is relatively insensitive to the particulars of specific corporate or government bonds.
Fixed-income attribution is the process of measuring returns generated by various sources of risk in a fixed income portfolio, particularly when multiple sources of return are active at the same time.
The term asset swap has a number of different meanings:
In finance, par yield is the yield on a fixed income security assuming that its market price is equal to par value. Par yield is used to derive the U.S. Treasury’s daily official “Treasury Par Yield Curve Rates”, which are used by investors to price debt securities traded in public markets, and by lenders to set interest rates on many other types of debt, including bank loans and mortgages.
The expectations hypothesis of the term structure of interest rates is the proposition that the long-term rate is determined purely by current and future expected short-term rates, in such a way that the expected final value of wealth from investing in a sequence of short-term bonds equals the final value of wealth from investing in long-term bonds.
In finance, a zero coupon swap (ZCS) is an interest rate derivative (IRD). In particular it is a linear IRD, that in its specification is very similar to the much more widely traded interest rate swap (IRS).
References
Standard texts