Bratteli diagram

Last updated

In mathematics, a Bratteli diagram is a combinatorial structure: a graph composed of vertices labelled by positive integers ("level") and unoriented edges between vertices having levels differing by one. The notion was introduced by Ola Bratteli [1] in 1972 in the theory of operator algebras to describe directed sequences of finite-dimensional algebras: it played an important role in Elliott's classification of AF-algebras and the theory of subfactors. Subsequently Anatoly Vershik associated dynamical systems with infinite paths in such graphs. [2]

Contents

Definition

A Bratteli diagram is given by the following objects:

A customary way to pictorially represent Bratteli diagrams is to align the vertices according to their levels, and put the number bv beside the vertex v, or use that number in place of v, as in

alt=E_0={a}. a is labeled 1, and has two edges to b and one to c. E_1={b,c}. b is labeled 2, and has one edge to d. c is labeled 1, and has one edge to d and one to e. E_2={d,e}. d is labeled 3, and has one edge to f. e is labeled 1, and has one edge to f and one to g. E_3={f,g}. f is labeled 4. g is labeled 1. Etc. Sample Bratteli diagram.svg
alt=E_0={a}. a is labeled 1, and has two edges to b and one to c. E_1={b,c}. b is labeled 2, and has one edge to d. c is labeled 1, and has one edge to d and one to e. E_2={d,e}. d is labeled 3, and has one edge to f. e is labeled 1, and has one edge to f and one to g. E_3={f,g}. f is labeled 4. g is labeled 1. Etc.

An ordered Bratteli diagram is a Bratteli diagram together with a partial order on En such that for any v  Vn the set { e  En−1 : r(e) = v } is totally ordered. Edges that do not share a common range vertex are incomparable. This partial order allows us to define the set of all maximal edges Emax and the set of all minimal edges Emin. A Bratteli diagram with a unique infinitely long path in Emax and Emin is called essentially simple. [3]

Sequence of finite-dimensional algebras

Any semisimple algebra over the complex numbers C of finite dimension can be expressed as a direct sumk Mnk(C) of matrix algebras, and the C-algebra homomorphisms between two such algebras up to inner automorphisms on both sides are completely determined by the multiplicity number between 'matrix algebra' components. Thus, an injective homomorphism of ⊕k=1i Mnk(C) into ⊕l=1j Mml(C) may be represented by a collection of positive numbers ak, l satisfying Σ nk ak, l ml. (The equality holds if and only if the homomorphism is unital; we can allow non-injective homomorphisms by allowing some ak,l to be zero.) This can be illustrated as a bipartite graph having the vertices marked by numbers (nk)k on one hand and the ones marked by (ml)l on the other hand, and having ak, l edges between the vertex nk and the vertex ml.

Thus, when we have a sequence of finite-dimensional semisimple algebras An and injective homomorphisms φn : An'  An+1: between them, we obtain a Bratteli diagram by putting

Vn = the set of simple components of An

(each isomorphic to a matrix algebra), marked by the size of matrices.

(En, r, s): the number of the edges between Mnk(C) ⊂ An and Mml(C) ⊂ An+1 is equal to the multiplicity of Mnk(C) into Mml(C) under φn.

Sequence of split semisimple algebras

Any semisimple algebra (possibly of infinite dimension) is one whose modules are completely reducible, i.e. they decompose into the direct sum of simple modules. Let be a chain of split semisimple algebras, and let be the indexing set for the irreducible representations of . Denote by the irreducible module indexed by . Because of the inclusion , any -module restricts to a -module. Let denote the decomposition numbers

The Bratteli diagram for the chain is obtained by placing one vertex for every element of on level and connecting a vertex on level to a vertex on level with edges.

Examples

Bratteli diagram for Brauer and BMW algebras on i=0,1,2,3, and 4 strands. Brauer-Bratteli.jpg
Bratteli diagram for Brauer and BMW algebras on i=0,1,2,3, and 4 strands.

(1) If , the ith symmetric group, the corresponding Bratteli diagram is the same as Young's lattice. [4]

(2) If is the Brauer algebra or the Birman–Wenzl algebra on i strands, then the resulting Bratteli diagram has partitions of i–2k (for ) with one edge between partitions on adjacent levels if one can be obtained from the other by adding or subtracting 1 from a single part.

(3) If is the Temperley–Lieb algebra on i strands, the resulting Bratteli has integers i–2k (for ) with one edge between integers on adjacent levels if one can be obtained from the other by adding or subtracting 1.

See also

Related Research Articles

In mathematics, a complete measure (or, more precisely, a complete measure space) is a measure space in which every subset of every null set is measurable (having measure zero). More formally, a measure space (X, Σ, μ) is complete if and only if

<span class="mw-page-title-main">Root system</span> Geometric arrangements of points, foundational to Lie theory

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.

In the mathematical field of representation theory, a weight of an algebra A over a field F is an algebra homomorphism from A to F, or equivalently, a one-dimensional representation of A over F. It is the algebra analogue of a multiplicative character of a group. The importance of the concept, however, stems from its application to representations of Lie algebras and hence also to representations of algebraic and Lie groups. In this context, a weight of a representation is a generalization of the notion of an eigenvalue, and the corresponding eigenspace is called a weight space.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

<span class="mw-page-title-main">Strongly regular graph</span> Concept in graph theory

In graph theory, a strongly regular graph (SRG) is a regular graph G = (V, E) with v vertices and degree k such that for some given integers

Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra , is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

In mathematics, in particular in measure theory, a content is a real-valued function defined on a collection of subsets such that

In the mathematical field of representation theory, a highest-weight category is a k-linear categoryC that

In mathematics, Plancherel measure is a measure defined on the set of irreducible unitary representations of a locally compact group , that describes how the regular representation breaks up into irreducible unitary representations. In some cases the term Plancherel measure is applied specifically in the context of the group being the finite symmetric group – see below. It is named after the Swiss mathematician Michel Plancherel for his work in representation theory.

In abstract algebra, a cellular algebra is a finite-dimensional associative algebra A with a distinguished cellular basis which is particularly well-adapted to studying the representation theory of A.

In mathematics, a Markov odometer is a certain type of topological dynamical system. It plays a fundamental role in ergodic theory and especially in orbit theory of dynamical systems, since a theorem of H. Dye asserts that every ergodic nonsingular transformation is orbit-equivalent to a Markov odometer.

In representation theory, a branch of mathematics, the theorem of the highest weight classifies the irreducible representations of a complex semisimple Lie algebra . There is a closely related theorem classifying the irreducible representations of a connected compact Lie group . The theorem states that there is a bijection

<span class="mw-page-title-main">Representation theory of semisimple Lie algebras</span>

In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.

<span class="mw-page-title-main">Representations of classical Lie groups</span>

In mathematics, the finite-dimensional representations of the complex classical Lie groups , , , , , can be constructed using the general representation theory of semisimple Lie algebras. The groups , , are indeed simple Lie groups, and their finite-dimensional representations coincide with those of their maximal compact subgroups, respectively , , . In the classification of simple Lie algebras, the corresponding algebras are

References

  1. Bratteli, Ola (1972). "Inductive limits of finite dimensional C*-algebras". Transactions of the American Mathematical Society. 171: 195–234. doi: 10.1090/s0002-9947-1972-0312282-2 . Zbl   0264.46057.
  2. Vershik, A.M. (1985). "A theorem on the Markov periodic approximation in ergodic theory". Journal of Soviet Mathematics. 28: 667–674. doi: 10.1007/bf02112330 . Zbl   0559.47006.
  3. Herman, Richard H.; Putnam, Ian F.; Skau, Christian F. (1992). "Ordered Bratteli diagrams, dimension groups and topological dynamics". International Journal of Mathematics. 3 (6): 827–864. doi:10.1142/S0129167X92000382.
  4. Alcock-Zeilinger, Judith M. "The Symmetric Group, its Representations, and Combinatorics" (PDF). University of Tübingen Department of Mathematics. Th. 4.5.