Burnside's theorem

Last updated
William Burnside. Burnside 2.jpeg
William Burnside.

In mathematics, Burnside's theorem in group theory states that if G is a finite group of order where p and q are prime numbers, and a and b are non-negative integers, then G is solvable. Hence each non-Abelian finite simple group has order divisible by at least three distinct primes.

Contents

History

The theorem was proved by WilliamBurnside  ( 1904 ) using the representation theory of finite groups. Several special cases of the theorem had previously been proved by Burnside, Jordan, and Frobenius.[ when? ] John Thompson pointed out that a proof avoiding the use of representation theory could be extracted from his work on the N-group theorem, and this was done explicitly by Goldschmidt (1970) for groups of odd order, and by Bender (1972) for groups of even order. Matsuyama (1973) simplified the proofs.

Proof

The following proof — using more background than Burnside's — is by contradiction. Let paqb be the smallest product of two prime powers, such that there is a non-solvable group G whose order is equal to this number.

If G had a nontrivial proper normal subgroup H, then (because of the minimality of G), H and G/H would be solvable, so G as well, which would contradict our assumption. So G is simple.

If a were zero, G would be a finite q-group, hence nilpotent, and therefore solvable.

Similarly, G cannot be abelian, otherwise it would be solvable. As G is simple, its center must therefore be trivial.

  • There is an element g of G which has qd conjugates, for some d > 0.

By the first statement of Sylow's theorem, G has a subgroup S of order pa. Because S is a nontrivial p-group, its center Z(S) is nontrivial. Fix a nontrivial element . The number of conjugates of g is equal to the index of its stabilizer subgroup Gg, which divides the index qb of S (because S is a subgroup of Gg). Hence this number is of the form qd. Moreover, the integer d is strictly positive, since g is nontrivial and therefore not central in G.

Let (χi)1  i  h be the family of irreducible characters of G over (here χ1 denotes the trivial character). Because g is not in the same conjugacy class as 1, the orthogonality relation for the columns of the group's character table gives:

Now the χi(g) are algebraic integers, because they are sums of roots of unity. If all the nontrivial irreducible characters which don't vanish at g take a value divisible by q at 1, we deduce that

is an algebraic integer (since it is a sum of integer multiples of algebraic integers), which is absurd. This proves the statement.

  • The complex number qdχ(g)/n is an algebraic integer.

The set of integer-valued class functions on G, Z([G]), is a commutative ring, finitely generated over . All of its elements are thus integral over , in particular the mapping u which takes the value 1 on the conjugacy class of g and 0 elsewhere.

The mapping which sends a class function f to

is a ring homomorphism. Because ρ(s)−1A(u)ρ(s) = A(u) for all s, Schur's lemma implies that A(u) is a homothety λIn. Its trace is equal to

Because the homothety λIn is the homomorphic image of an integral element, this proves that the complex number λ = qdχ(g)/n is an algebraic integer.

  • The complex number χ(g)/n is an algebraic integer.

Since q is relatively prime to n, by Bézout's identity there are two integers x and y such that:

Because a linear combination with integer coefficients of algebraic integers is again an algebraic integer, this proves the statement.

  • The image of g, under the representation ρ, is a homothety.

Let ζ be the complex number χ(g)/n. It is an algebraic integer, so its norm N(ζ) (i.e. the product of its conjugates, that is the roots of its minimal polynomial over ) is a nonzero integer. Now ζ is the average of roots of unity (the eigenvalues of ρ(g)), hence so are its conjugates, so they all have an absolute value less than or equal to 1. Because the absolute value of their product N(ζ) is greater than or equal to 1, their absolute value must all be 1, in particular ζ, which means that the eigenvalues of ρ(g) are all equal, so ρ(g) is a homothety.

  • Conclusion

Let N be the kernel of ρ. The homothety ρ(g) is central in Im(ρ) (which is canonically isomorphic to G/N), whereas g is not central in G. Consequently, the normal subgroup N of the simple group G is nontrivial, hence it is equal to G, which contradicts the fact that ρ is a nontrivial representation.

This contradiction proves the theorem.

Related Research Articles

<span class="mw-page-title-main">Abelian group</span> Commutative group (mathematics)

In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel.

<span class="mw-page-title-main">Simple group</span> Group without normal subgroups other than the trivial group and itself

In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the group itself. A group that is not simple can be broken into two smaller groups, namely a nontrivial normal subgroup and the corresponding quotient group. This process can be repeated, and for finite groups one eventually arrives at uniquely determined simple groups, by the Jordan–Hölder theorem.

<span class="mw-page-title-main">Solvable group</span> Group with subnormal series where all factors are abelian

In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup.

In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below.

The Riemann hypothesis is one of the most important conjectures in mathematics. It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann hypothesis. Many mathematicians believe these generalizations of the Riemann hypothesis to be true. The only cases of these conjectures which have been proven occur in the algebraic function field case.

In analytic number theory and related branches of mathematics, a complex-valued arithmetic function is a Dirichlet character of modulus if for all integers and :

  1. that is, is completely multiplicative.
  2. ; that is, is periodic with period .

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

<span class="mw-page-title-main">Cayley graph</span> Graph defined from a mathematical group

In mathematics, a Cayley graph, also known as a Cayley color graph, Cayley diagram, group diagram, or color group, is a graph that encodes the abstract structure of a group. Its definition is suggested by Cayley's theorem, and uses a specified set of generators for the group. It is a central tool in combinatorial and geometric group theory. The structure and symmetry of Cayley graphs makes them particularly good candidates for constructing expander graphs.

In mathematics, and in particular the theory of group representations, the regular representation of a group G is the linear representation afforded by the group action of G on itself by translation.

In mathematics, in the area of number theory, a Gaussian period is a certain kind of sum of roots of unity. The periods permit explicit calculations in cyclotomic fields connected with Galois theory and with harmonic analysis. They are basic in the classical theory called cyclotomy. Closely related is the Gauss sum, a type of exponential sum which is a linear combination of periods.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In mathematics, Schur's lemma is an elementary but extremely useful statement in representation theory of groups and algebras. In the group case it says that if M and N are two finite-dimensional irreducible representations of a group G and φ is a linear map from M to N that commutes with the action of the group, then either φ is invertible, or φ = 0. An important special case occurs when M = N, i.e. φ is a self-map; in particular, any element of the center of a group must act as a scalar operator on M. The lemma is named after Issai Schur who used it to prove the Schur orthogonality relations and develop the basics of the representation theory of finite groups. Schur's lemma admits generalisations to Lie groups and Lie algebras, the most common of which are due to Jacques Dixmier and Daniel Quillen.

Chebotarev's density theorem in algebraic number theory describes statistically the splitting of primes in a given Galois extension K of the field of rational numbers. Generally speaking, a prime integer will factor into several ideal primes in the ring of algebraic integers of K. There are only finitely many patterns of splitting that may occur. Although the full description of the splitting of every prime p in a general Galois extension is a major unsolved problem, the Chebotarev density theorem says that the frequency of the occurrence of a given pattern, for all primes p less than a large integer N, tends to a certain limit as N goes to infinity. It was proved by Nikolai Chebotaryov in his thesis in 1922, published in.

<span class="mw-page-title-main">Arithmetic group</span>

In mathematics, an arithmetic group is a group obtained as the integer points of an algebraic group, for example They arise naturally in the study of arithmetic properties of quadratic forms and other classical topics in number theory. They also give rise to very interesting examples of Riemannian manifolds and hence are objects of interest in differential geometry and topology. Finally, these two topics join in the theory of automorphic forms which is fundamental in modern number theory.

In mathematics, more specifically in group theory, the character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. The character carries the essential information about the representation in a more condensed form. Georg Frobenius initially developed representation theory of finite groups entirely based on the characters, and without any explicit matrix realization of representations themselves. This is possible because a complex representation of a finite group is determined by its character. The situation with representations over a field of positive characteristic, so-called "modular representations", is more delicate, but Richard Brauer developed a powerful theory of characters in this case as well. Many deep theorems on the structure of finite groups use characters of modular representations.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic image of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in category theory, introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory. This specific case is the monoid of isomorphism classes of objects of an abelian category, with the direct sum as its operation.

In number theory, the class number formula relates many important invariants of a number field to a special value of its Dedekind zeta function.

In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups.

In cryptography, learning with errors (LWE) is a mathematical problem that is widely used to create secure encryption algorithms. It is based on the idea of representing secret information as a set of equations with errors. In other words, LWE is a way to hide the value of a secret by introducing noise to it. In more technical terms, it refers to the computational problem of inferring a linear -ary function over a finite ring from given samples some of which may be erroneous. The LWE problem is conjectured to be hard to solve, and thus to be useful in cryptography.

References