This article needs additional citations for verification .(October 2010) |
Business analytics (BA) refers to the skills, technologies, and practices for iterative exploration and investigation of past business performance to gain insight and drive business planning. Business analytics focuses on developing new insights and understanding of business performance based on data and statistical methods. In contrast, business intelligence traditionally focuses on using a consistent set metrics to both measure past performance and guide business planning. In other words, business intelligence focusses on description, while business analytics focusses on prediction and prescription. [1]
Business analytics makes extensive use of analytical modeling and numerical analysis, including explanatory and predictive modeling, [2] and fact-based management to drive decision making. It is therefore closely related to management science. Analytics may be used as input for human decisions or may drive fully automated decisions. Business intelligence is querying, reporting, online analytical processing (OLAP), and "alerts".
In other words, querying, reporting, and OLAP are alert tools that can answer questions such as what happened, how many, how often, where the problem is, and what actions are needed. Business analytics can answer questions like why is this happening, what if these trends continue, what will happen next (predict), and what is the best outcome that can happen (optimize). [3]
In healthcare, business analysis can be used to operate and manage clinical information systems. It can transform medical data from a bewildering array of analytical methods into useful information. Data analysis can also be used to generate contemporary reporting systems which include the patient's latest key indicators, historical trends and reference values. [4]
Analytics have been used in business since the management exercises were put into place by Frederick Winslow Taylor in the late 19th century. Henry Ford measured the time of each component in his newly established assembly line. But analytics began to command more attention in the late 1960s when computers were used in decision support systems. Since then, analytics have changed and formed with the development of enterprise resource planning (ERP) systems, data warehouses, and a large number of other software tools and processes. [3]
In later years the business analytics have exploded with the introduction of computers. This change has brought analytics to a whole new level and has brought about endless possibilities. As far as analytics has come in history, and what the current field of analytics is today, many people would never think that analytics started in the early 1900s with Mr. Ford himself.
Business analytics depends on sufficient volumes of high-quality data. The difficulty in ensuring data quality is integrating and reconciling data across different systems, and then deciding what subsets of data to make available. [3]
Previously, analytics was considered a type of after-the-fact method of forecasting consumer behavior by examining the number of units sold in the last quarter or the last year. This type of data warehousing required a lot more storage space than it did speed. Now business analytics is becoming a tool that can influence the outcome of customer interactions. [8] When a specific customer type is considering a purchase, an analytics-enabled enterprise can modify the sales pitch to appeal to that consumer. This means the storage space for all that data must react extremely fast to provide the necessary data in real-time.
Thomas Davenport, professor of information technology and management at Babson College argues that businesses can optimize a distinct business capability via analytics and thus better compete. He identifies these characteristics of an organization that are apt to compete on analytics: [3]
In computing, a data warehouse, also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. Data warehouses are central repositories of data integrated from disparate sources. They store current and historical data organized so as to make it easy to create reports, query and get insights from the data. Unlike databases, they are intended to be used by analysts and managers to help make organizational decisions.
Business intelligence (BI) consists of strategies, methodologies, and technologies used by enterprises for data analysis and management of business information. Common functions of BI technologies include reporting, online analytical processing, analytics, dashboard development, data mining, process mining, complex event processing, business performance management, benchmarking, text mining, predictive analytics, and prescriptive analytics.
In computing, online analytical processing, or OLAP, is an approach to quickly answer multi-dimensional analytical (MDA) queries. The term OLAP was created as a slight modification of the traditional database term online transaction processing (OLTP). OLAP is part of the broader category of business intelligence, which also encompasses relational databases, report writing and data mining. Typical applications of OLAP include business reporting for sales, marketing, management reporting, business process management (BPM), budgeting and forecasting, financial reporting and similar areas, with new applications emerging, such as agriculture.
Analytics is the systematic computational analysis of data or statistics. It is used for the discovery, interpretation, and communication of meaningful patterns in data, which also falls under and directly relates to the umbrella term, data science. Analytics also entails applying data patterns toward effective decision-making. It can be valuable in areas rich with recorded information; analytics relies on the simultaneous application of statistics, computer programming, and operations research to quantify performance.
Data management comprises all disciplines related to handling data as a valuable resource, it is the practice of managing an organization's data so it can be analyzed for decision making.
SAS is a statistical software suite developed by SAS Institute for data management, advanced analytics, multivariate analysis, business intelligence, criminal investigation, and predictive analytics. SAS' analytical software is built upon artificial intelligence and utilizes machine learning, deep learning and generative AI to manage and model data. The software is widely used in industries such as finance, insurance, health care and education.
Essbase is a multidimensional database management system (MDBMS) that provides a platform upon which to build analytic applications. Essbase began as a product from Arbor Software, which merged with Hyperion Software in 1998. Oracle Corporation acquired Hyperion Solutions Corporation in 2007. Until late 2005 IBM also marketed an OEM version of Essbase as DB2 OLAP Server.
Microsoft SQL Server Analysis Services (SSAS) is an online analytical processing (OLAP) and data mining tool in Microsoft SQL Server. SSAS is used as a tool by organizations to analyze and make sense of information possibly spread out across multiple databases, or in disparate tables or files. Microsoft has included a number of services in SQL Server related to business intelligence and data warehousing. These services include Integration Services, Reporting Services and Analysis Services. Analysis Services includes a group of OLAP and data mining capabilities and comes in two flavors multidimensional and tabular, where the difference between the two is how the data is presented. In a tabular model, the information is arranged in two-dimensional tables which can thus be more readable for a human. A multidimensional model can contain information with many degrees of freedom, and must be unfolded to increase readability by a human.
Enterprise feedback management (EFM) is a system of processes and software that enables organizations to centrally manage deployment of surveys while dispersing authoring and analysis throughout an organization. EFM systems typically provide different roles and permission levels for different types of users, such as novice survey authors, professional survey authors, survey reporters and translators. EFM can help an organization establish a dialogue with employees, partners, and customers regarding key issues and concerns and potentially make customer-specific real time interventions. EFM consists of data collection, analysis and reporting.
Business intelligence software is a type of application software designed to retrieve, analyze, transform and report data for business intelligence (BI). The applications generally read data that has been previously stored, often - though not necessarily - in a data warehouse or data mart.
In business intelligence, location intelligence (LI), or spatial intelligence, is the process of deriving meaningful insight from geospatial data relationships to solve a particular problem. It involves layering multiple data sets spatially and/or chronologically, for easy reference on a map, and its applications span industries, categories and organizations.
Customer analytics is a process by which data from customer behavior is used to help make key business decisions via market segmentation and predictive analytics. This information is used by businesses for direct marketing, site selection, and customer relationship management. Marketing provides services to satisfy customers. With that in mind, the productive system is considered from its beginning at the production level, to the end of the cycle at the consumer. Customer analytics plays an important role in the prediction of customer behavior.
Integrated Business Planning (IBP) is a strategic process that aligns an organisation’s business objectives with its operational and financial plans to ensure cohesive decision-making and optimised performance. It serves as an evolution of traditional sales and operations planning (TS&OP), extending its scope to integrate all necessary to accomplish this task.
Decision intelligence is an engineering discipline that augments data science with theory from social science, decision theory, and managerial science. Its application provides a framework for best practices in organizational decision-making and processes for applying computational technologies such as machine learning, natural language processing, reasoning, and semantics at scale. The basic idea is that decisions are based on our understanding of how actions lead to outcomes. Decision intelligence is a discipline for analyzing this chain of cause and effect, and decision modeling is a visual language for representing these chains.
Pentaho is the brand name for several Data Management software products that make up the Pentaho+ Data Platform. These include Pentaho Data Integration, Pentaho Business Analytics, Pentaho Data Catalog, and Pentaho Data Optimiser.
Collaborative decision-making (CDM) software is a software application or module that helps to coordinate and disseminate data and reach consensus among work groups.
Prescriptive analytics is a form of business analytics which suggests decision options for how to take advantage of a future opportunity or mitigate a future risk, and shows the implication of each decision option. It enables an enterprise to consider "the best course of action to take" in the light of information derived from descriptive and predictive analytics.
SAP HANA is an in-memory, column-oriented, relational database management system developed and marketed by SAP SE. Its primary function as the software running a database server is to store and retrieve data as requested by the applications. In addition, it performs advanced analytics and includes extract, transform, load (ETL) capabilities as well as an application server.
An intelligent maintenance system (IMS) is a system that uses collected data from machinery in order to predict and prevent potential failures in them. The occurrence of failures in machinery can be costly and even catastrophic. In order to avoid failures, there needs to be a system which analyzes the behavior of the machine and provides alarms and instructions for preventive maintenance. Analyzing the behavior of the machines has become possible by means of advanced sensors, data collection systems, data storage/transfer capabilities and data analysis tools. These are the same set of tools developed for prognostics. The aggregation of data collection, storage, transformation, analysis and decision making for smart maintenance is called an intelligent maintenance system (IMS).
An intelligence engine is a type of enterprise information management that combines business rule management, predictive, and prescriptive analytics to form a unified information access platform that provides real-time intelligence through search technologies, dashboards and/or existing business infrastructure. Intelligence Engines are process and/or business problem specific, resulting in industry and/or function-specific marketing trademarks associated with them. They can be differentiated from enterprise resource planning (ERP) software in that intelligence engines include organization-level business rules and proactive decision management functionality.