This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
|
In theoretical computer science, the busy beaver game aims at finding a terminating program of a given size that (depending on definition) either produces the most output possible, or runs for the longest number of steps. [2] Since an endlessly looping program producing infinite output or running for infinite time is easily conceived, such programs are excluded from the game. [2] Rather than traditional programming languages, the programs used in the game are n-state Turing machines, [2] one of the first mathematical models of computation. [3]
Turing machines consist of an infinite tape, and a finite set of states which serve as the program's "source code". Producing the most output is defined as writing the largest number of 1s on the tape, also referred to as achieving the highest score, and running for the longest time is defined as taking the longest number of steps to halt. [4] The n-state busy beaver game consists of finding the longest-running or highest-scoring Turing machine which has n states and eventually halts. [2] Such machines are assumed to start on a blank tape, and the tape is assumed to contain only zeros and ones (a binary Turing machine). [2] The objective of the game is to program a set of transitions between states aiming for the highest score or longest running time while making sure the machine will halt eventually.
An nth busy beaver, BB-n or simply "busy beaver" is a Turing machine that wins the n-state busy beaver game. [5] Depending on definition, it either attains the highest score, or runs for the longest time, among all other possible n-state competing Turing machines. The functions determining the highest score or longest running time of the n-state busy beavers by each definition are Σ(n) and S(n) respectively. [4]
Deciding the running time or score of the nth Busy Beaver is incomputable. [4] In fact, both the functions Σ(n) and S(n) eventually become larger than any computable function. [4] This has implications in computability theory, the halting problem, and complexity theory. [6] The concept was first introduced by Tibor Radó in his 1962 paper, "On Non-Computable Functions". [4] One of the most interesting aspects of the busy beaver game is that, if it were possible to compute the functions Σ(n) and S(n) for all n, then this would resolve all mathematical conjectures which can be encoded as "does this Turing machine halt or not". [5] For example, a 27-state Turing machine could check Goldbach's conjecture for each number and halt on a counterexample: if this machine had not halted after running for S(27) steps, then it must run forever, resolving the conjecture. [5] Many other problems, including the Riemann hypothesis (744 states) and the consistency of ZF set theory (745 states [7] [8] ), can be expressed in a similar form, where at most a countably infinite number of cases need to be checked. [5]
The n-state busy beaver game (or BB-n game), introduced in Tibor Radó's 1962 paper, involves a class of Turing machines, each member of which is required to meet the following design specifications:
"Running" the machine consists of starting in the starting state, with the current tape cell being any cell of a blank (all-0) tape, and then iterating the transition function until the Halt state is entered (if ever). If, and only if, the machine eventually halts, then the number of 1s finally remaining on the tape is called the machine's score. The n-state busy beaver (BB-n) game is therefore a contest, depending on definition to find such an n-state Turing machine having the largest possible score or running time.
The rules for one 1-state Turing machine might be:
This Turing machine would move to the right, swapping the value of all the bits it passes. Since the starting tape is all 0s, it would make an unending string of ones. This machine would not be a busy beaver contender because it runs forever on a blank tape.
In his original 1962 paper, Radó defined two functions related to the busy beaver game: the score function Σ(n) and the shifts function S(n). [4] Both take a number of Turing machine states and output the maximum score attainable by a Turing machine of that number of states by some measure. The score function Σ(n) gives the maximum number of 1s an -state Turing machine can output before halting, while the shifts function S(n) gives the maximum number of shifts (or equivalently steps, because each step includes a shift) that an -state Turing machine can undergo before halting. [4] He proved that both of these functions were noncomputable, because they each grew faster than any computable function. [4] The function BB(n) has been defined to be either of these functions,[ citation needed ] so that notation is not used in this article.
A number of other uncomputable functions can also be defined based on measuring the performance of Turing machines in other ways than time or maximal number of ones. [9] For example: [9]
These four functions together stand in the relation . [9] More functions can also be defined by operating the game on different computing machines, such as 3-symbol Turing machines, [10] non-deterministic Turing machines, [11] the lambda calculus (sequence A333479 in the OEIS ) or even arbitrary programming languages. [10]
The score function quantifies the maximum score attainable by a busy beaver on a given measure. This is a noncomputable function, because it grows asymptotically faster than any computable function. [12]
The score function, , is defined so that Σ(n) is the maximum attainable score (the maximum number of 1s finally on the tape) among all halting 2-symbol n-state Turing machines of the above-described type, when started on a blank tape.
It is clear that Σ is a well-defined function: for every n, there are at most finitely many n-state Turing machines as above, up to isomorphism, hence at most finitely many possible running times.
According to the score-based definition, any n-state 2-symbol Turing machine M for which σ(M) = Σ(n) (i.e., which attains the maximum score) is called a busy beaver. For each n, there exist at least 4(n− 1)! n-state busy beavers. (Given any n-state busy beaver, another is obtained by merely changing the shift direction in a halting transition, a third by reversing all shift directions uniformly, and a fourth by reversing the halt direction of the all-swapped busy beaver. Furthermore, a permutation of all states except Start and Halt produces a machine that attains the same score. Theoretically, there could be more than one kind of transition leading to the halting state, but in practice it would be wasteful, because there is only one sequence of state transitions producing the sought-after result.)
Radó's 1962 paper proved that if is any computable function, then Σ(n) > f(n) for all sufficiently large n, and hence that Σ is not a computable function. [4]
Moreover, this implies that it is undecidable by a general algorithm whether an arbitrary Turing machine is a busy beaver. (Such an algorithm cannot exist, because its existence would allow Σ to be computed, which is a proven impossibility. In particular, such an algorithm could be used to construct another algorithm that would compute Σ as follows: for any given n, each of the finitely many n-state 2-symbol Turing machines would be tested until an n-state busy beaver is found; this busy beaver machine would then be simulated to determine its score, which is by definition Σ(n).)
Even though Σ(n) is an uncomputable function, there are some small n for which it is possible to obtain its values and prove that they are correct. It is not hard to show that Σ(0) = 0, Σ(1) = 1, Σ(2) = 4, and with progressively more difficulty it can be shown that Σ(3) = 6, Σ(4) = 13 and Σ(5) = 4098 (sequence A028444 in the OEIS ). Σ(n) has not yet been determined for any instance of n > 5, although lower bounds have been established (see the Known values section below).
A variant of Kolmogorov complexity is defined as follows: [13] The complexity of a number n is the smallest number of states needed for a BB-class Turing machine that halts with a single block of n consecutive 1s on an initially blank tape. The corresponding variant of Chaitin's incompleteness theorem states that, in the context of a given axiomatic system for the natural numbers, there exists a number k such that no specific number can be proven to have complexity greater than k, and hence that no specific upper bound can be proven for Σ(k) (the latter is because "the complexity of n is greater than k" would be proven if n > Σ(k) were proven). As mentioned in the cited reference, for any axiomatic system of "ordinary mathematics" the least value k for which this is true is far less than 10⇈10; consequently, in the context of ordinary mathematics, neither the value nor any upper-bound of Σ(10⇈10) can be proven. (Gödel's first incompleteness theorem is illustrated by this result: in an axiomatic system of ordinary mathematics, there is a true-but-unprovable sentence of the form Σ(10⇈10) = n, and there are infinitely many true-but-unprovable sentences of the form Σ(10⇈10) < n.)
In addition to the function Σ, Radó [1962] introduced another extreme function for Turing machines, the maximum shifts function, S, defined as follows: [4]
Because normal Turing machines are required to have a shift in each and every transition or "step" (including any transition to a Halt state), the max-shifts function is at the same time a max-steps function.
Radó showed that S is noncomputable for the same reason that Σ is noncomputable — it grows faster than any computable function. He proved this simply by noting that for each n, S(n) ≥ Σ(n). Each shift may write a 0 or a 1 on the tape, while Σ counts a subset of the shifts that wrote a 1, namely the ones that hadn't been overwritten by the time the Turing machine halted; consequently, S grows at least as fast as Σ, which had already been proved to grow faster than any computable function. [4]
The following connection between Σ and S was used by Lin & Radó [Computer Studies of Turing Machine Problems, 1965] to prove that Σ(3) = 6 and that S(3)=21: For a given n, if S(n) is known then all n-state Turing machines can (in principle) be run for up to S(n) steps, at which point any machine that hasn't yet halted will never halt. At that point, by observing which machines have halted with the most 1s on the tape (i.e., the busy beavers), one obtains from their tapes the value of Σ(n). The approach used by Lin & Radó for the case of n = 3 was to conjecture that S(3) = 21 (after unsuccessfully conjecturing 18), then to simulate all the essentially different 3-state machines (82,944 machines, equal to 21034) for up to 21 steps. They found 26,073 machines that halted, including one that halted only after 21 steps. By analyzing the behavior of the machines that had not halted within 21 steps, they succeeded in showing that none of those machines would ever halt, most of them following a certain pattern. This proved the conjecture that S(3) = 21, and also determined that Σ(3) = 6, which was attained by several machines, all halting after 11 to 14 steps. [14]
In 2016, Adam Yedidia and Scott Aaronson obtained the first (explicit) upper bound on the minimum n for which S(n) is unprovable in ZFC. To do so they constructed a 7910-state [15] Turing machine whose behavior cannot be proven based on the usual axioms of set theory (Zermelo–Fraenkel set theory with the axiom of choice), under reasonable consistency hypotheses (stationary Ramsey property). [16] [17] Stefan O'Rear then reduced it to 1919 states, with the dependency on the stationary Ramsey property eliminated, [18] [19] and later to 748 states. [6] In July 2023, Riebel reduced it to 745 states. [7] [8]
Suppose that S(n) is a computable function and let EvalS denote a TM, evaluating S(n). Given a tape with n 1s it will produce S(n) 1s on the tape and then halt. Let Clean denote a Turing machine cleaning the sequence of 1s initially written on the tape. Let Double denote a Turing machine evaluating function n + n. Given a tape with n 1s it will produce 2n 1s on the tape and then halt. Let us create the composition Double | EvalS | Clean and let n0 be the number of states of this machine. Let Create_n0 denote a Turing machine creating n0 1s on an initially blank tape. This machine may be constructed in a trivial manner to have n0 states (the state i writes 1, moves the head right and switches to state i + 1, except the state n0, which halts). Let N denote the sum n0 + n0.
Let BadS denote the composition Create_n0 | Double | EvalS | Clean. Notice that this machine has N states. Starting with an initially blank tape it first creates a sequence of n0 1s and then doubles it, producing a sequence of N 1s. Then BadS will produce S(N) 1s on tape, and at last it will clear all 1s and then halt. But the phase of cleaning will continue at least S(N) steps, so the time of working of BadS is strictly greater than S(N), which contradicts to the definition of the function S(n).
The uncomputability of Σ(n) may be proved in a similar way. In the above proof, one must exchange the machine EvalS with EvalΣ and Clean with Increment — a simple TM, searching for a first 0 on the tape and replacing it with 1.
The uncomputability of S(n) can also be established by reference to the blank tape halting problem. The blank tape halting problem is the problem of deciding for any Turing machine whether or not it will halt when started on an empty tape. The blank tape halting problem is equivalent to the standard halting problem and so it is also uncomputable. If S(n) was computable, then we could solve the blank tape halting problem simply by running any given Turing machine with n states for S(n) steps; if it has still not halted, it never will. So, since the blank tape halting problem is not computable, it follows that S(n) must likewise be uncomputable.
Both and functions are uncomputable . [9] This can be shown for by noting that every tape square a Turing machine writes a one to, it must also visit: in other words, . [9] The function can be shown to be incomputable by proving, for example, that : this can be done by designing an (3n+3)-state Turing machine which simulates the n-state space champion, and then uses it to write at least contiguous ones to the tape. [9]
Analogs of the shift function can be simply defined in any programming language, given that the programs can be described by bit-strings, and a program's number of steps can be counted. [10] For example, the busy beaver game can also be generalized to two dimensions using Turing machines on two-dimensional tapes, or to Turing machines that are allowed to stay in the same place as well as move to the left and right. [10] Alternatively a "busy beaver function" for diverse models of computation can be defined with Kolmogorov complexity. [10] This is done by taking to be the largest integer such that , where is the length of the shortest program in that outputs : is thereby the largest integer a program with length or less can output in . [10]
The longest running 6-state, 2-symbol machine which has the additional property of reversing the tape value at each step produces 6147 1s after 47339970 steps.[ citation needed ] So for the Reversal Turing Machine (RTM) class, [20] SRTM(6) ≥ 47339970 and ΣRTM(6) ≥ 6147. Likewise we could define an analog to the Σ function for register machines as the largest number which can be present in any register on halting, for a given number of instructions.[ citation needed ]
A simple generalization is the extension to Turing machines with m symbols instead of just 2 (0 and 1). [10] For example a trinary Turing machine with m = 3 symbols would have the symbols 0, 1, and 2. The generalization to Turing machines with n states and m symbols defines the following generalized busy beaver functions:
For example, the longest-running 3-state 3-symbol machine found so far runs 119112334170342540 steps before halting. [21] [ better source needed ]
p | steps | states |
---|---|---|
1 | 2 | 2 |
2 | 4 | 4 |
3 | 6 | 7 |
4 | 7 | 11 |
5 | 8 | 15 |
6 | 7 | 18 |
7 | 6 | 18 |
The problem can be extended to nondeterministic Turing machines by looking for the system with the most states across all branches or the branch with the longest number of steps. [11] The question of whether a given NDTM will halt is still computationally irreducible, and the computation required to find an NDTM busy beaver is significantly greater than the deterministic case, since there are multiple branches that need to be considered. For a 2-state, 2-color system with p cases or rules, the table to the right gives the maximum number of steps before halting and maximum number of unique states created by the NDTM.
In addition to posing a rather challenging mathematical game, the busy beaver functions Σ(n) and S(n) offer an entirely new approach to solving pure mathematics problems. Many open problems in mathematics could in theory, but not in practice, be solved in a systematic way given the value of S(n) for a sufficiently large n. [5] [22] Theoretically speaking, the value of S(n) encodes the answer to all mathematical conjectures that can be checked in infinite time by a Turing machine with less than or equal to n states. [6]
Consider any conjecture: any conjecture that could be disproven via a counterexample among a countable number of cases (e.g. Goldbach's conjecture). Write a computer program that sequentially tests this conjecture for increasing values. In the case of Goldbach's conjecture, we would consider every even number ≥ 4 sequentially and test whether or not it is the sum of two prime numbers. Suppose this program is simulated on an n-state Turing machine. If it finds a counterexample (an even number ≥ 4 that is not the sum of two primes in our example), it halts and indicates that. However, if the conjecture is true, then our program will never halt. (This program halts only if it finds a counterexample.) [6]
Now, this program is simulated by an n-state Turing machine, so if we know S(n) we can decide (in a finite amount of time) whether or not it will ever halt by simply running the machine that many steps. And if, after S(n) steps, the machine does not halt, we know that it never will and thus that there are no counterexamples to the given conjecture (i.e., no even numbers that are not the sum of two primes). This would prove the conjecture to be true. [6] Thus specific values (or upper bounds) for S(n) could be, in theory, used to systematically solve many open problems in mathematics. [6]
However, current results on the busy beaver problem suggest that this will not be practical for two reasons:[ citation needed ]
Another property of S(n) is that no arithmetically sound, computably axiomatized theory can prove all of the function's values. Specifically, given a computable and arithmetically sound theory , there is a number such that for all , no statement of the form can be proved in . [6] This implies that for each theory there is a specific largest value of S(n) that it can prove. This is true because for every such , a Turing machine with states can be designed to enumerate every possible proof in . [6] If the theory is inconsistent, then all false statements are provable, and the Turing machine can be given the condition to halt if and only if it finds a proof of, for example, . [6] Any theory that proves the value of proves its own consistency, violating Gödel's second incompleteness theorem. [6] This can be used to place various theories on a scale, for example the various large cardinal axioms in ZFC: if each theory is assigned as its number , theories with larger values of prove the consistency of those below them, placing all such theories on a countably infinite scale. [6]
Exploring the relationship between computational universality and the dynamic behavior of Busy Beaver Turing machines, a conjecture was proposed in 2012 [26] suggesting that Busy Beaver machines were natural candidates for Turing universality as they display complex characteristics, known for (1) their maximal computational complexity within size constraints, (2) their ability to perform non-trivial calculations before halting, and (3) the difficulty in finding and proving these machines; these features suggest that Busy Beaver machines possess the necessary complexity for universality.
In 1964 Milton Green developed a lower bound for the 1s-counting variant of the Busy Beaver function that was published in the proceedings of the 1964 IEEE symposium on switching circuit theory and logical design. Heiner Marxen and Jürgen Buntrock described it as "a non-trivial (not primitive recursive) lower bound". [27] This lower bound can be calculated but is too complex to state as a single expression in terms of n. [28] This was done with a set of Turing machines, each of which demonstrated the lower bound for a certain n. [28] When n=8 the method gives
In contrast, the best current (as of 2024) lower bound on is , where each is Knuth's up-arrow notation. [10] This represents , an exponentiated chain of 15 tens equal to . The value of is probably much larger still than that.
Specifically, the lower bound was shown with a series of recursive Turing machines, each of which was made of a smaller one with two additional states that repeatedly applied the smaller machine to the input tape. [28] Defining the value of the N-state busy-beaver competitor on a tape containing ones to be (the ultimate output of each machine being its value on , because a blank tape has 0 ones), the recursion relations are as follows: [28] a
This leads to two formulas, for odd and even numbers, for calculating the lower bound given by the Nth machine, :
The lower bound BB(N) can also be related to the Ackermann function. It can be shown that: [29]
Trivially, S(n) ≥ Σ(n) because a machine that writes Σ(n) ones must take at least Σ(n) steps to do so. [29] It is possible to give a number of upper bounds on the time S(n) with the number of ones Σ(n):
By defining num(n) to be the maximum number of ones an n-state Turing machine is allowed to output contiguously, rather than in any position (the largest unary number it can output), it is possible to show: [29]
Ben-Amram and Petersen, 2002, also give an asymptotically improved bound on S(n). There exists a constant c, such that for all n ≥ 2: [29]
The following table lists the exact values and some known lower bounds for S(n), Σ(n), and several other busy beaver functions. In this table, 2-symbol Turing machines are used. Entries listed as "?" are at least as large as other entries to the left (because all n-state machines are also (n+1) state machines), and no larger than entries above them (because S(n) ≥ space(n) ≥ Σ(n) ≥ num(n)). So, space(6) is known to be greater than 10⇈15, as space(n) ≥ Σ(n) and Σ(6) > 10⇈15. 47176870 is an upper bound for space(5), because S(5) = 47176870 ( [3] ) and S(n) ≥ space(n). 4098 is an upper bound for num(5), because Σ(5) = 4098 ( [29] ) and Σ(n) ≥ num(n). The last entry listed as "?" is num(6), because Σ(6) > 10⇈15, but Σ(n) ≥ num(n).
Function | 2-state | 3-state | 4-state | 5-state | 6-state |
---|---|---|---|---|---|
S(n) | 6 ( [6] ) | 21 ( [6] ) | 107 ( [6] ) | 47176870 ( [3] ) | > 10⇈15 ( [10] ) |
space(n) | 4 ( [29] ) | 7 ( [29] ) | 16 ( [29] ) | ≥ 12289 ( [29] ) ≤ 47176870 (S(n) ≥ space(n)) | > 10⇈15 (space(n) ≥ Σ(n)) |
Σ(n) | 4 ( [29] ) | 6 ( [29] ) | 13 ( [29] ) | 4098 ( [29] ) | > 10⇈15 ( [30] ) |
num(n) | 4 ( [29] ) | 6 ( [29] ) | 12 ( [29] ) | ≤ 4098 (Σ(n) ≥ num(n)) | ? |
The 5-state busy beaver was discovered by Heiner Marxen and Jürgen Buntrock in 1989, but only proved to be the winning fifth busy beaver — stylized as BB(5) — in 2024 using a proof in Coq. [31] [32]
These are tables of rules for Turing machines that generate Σ(1) and S(1), Σ(2) and S(2), Σ(3) (but not S(3)), Σ(4) and S(4), Σ(5) and S(5), and the best known lower bound for Σ(6) and S(6).
In the tables, columns represent the current state and rows represent the current symbol read from the tape. Each table entry is a string of three characters, indicating the symbol to write onto the tape, the direction to move, and the new state (in that order). The halt state is shown as H.
Each machine begins in state A with an infinite tape that contains all 0s. Thus, the initial symbol read from the tape is a 0.
Result key: (starts at the position overlined, halts at the position underlined)
A | |
---|---|
0 | 1RH |
1 | (not used) |
Result: 0 0 10 0 (1 step, one "1" total)
A | B | |
---|---|---|
0 | 1RB | 1LA |
1 | 1LB | 1RH |
Result: 0 0 1 1 1 1 0 0 (6 steps, four "1"s total)
Result: 0 0 1 1 1 1 1 1 0 0 (14 steps, six "1"s total).
This is one of several nonequivalent machines giving six 1s. Unlike the previous machines, this one is a busy beaver for Σ, but not for S. (S(3) = 21, and the machine obtains only five 1s. [14] )
A | B | C | D | |
---|---|---|---|---|
0 | 1RB | 1LA | 1RH | 1RD |
1 | 1LB | 0LC | 1LD | 0RA |
Result: 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 (107 steps, thirteen "1"s total)
A | B | C | D | E | |
---|---|---|---|---|---|
0 | 1RB | 1RC | 1RD | 1LA | 1RH |
1 | 1LC | 1RB | 0LE | 1LD | 0LA |
Result: 4098 "1"s with 8191 "0"s interspersed in 47,176,870 steps.
Note in the image to the right how this solution is similar qualitatively to the evolution of some cellular automata.
Result: 1 0 1 1 1 ... 1 1 1 ("10" followed by more than 10↑↑15 contiguous "1"s in more than 10↑↑15 steps, where 10↑↑15=1010..10, an exponential tower of 15 tens).
In the following table, the rules for each busy beaver (maximizing Σ) are represented visually, with orange squares corresponding to a "1" on the tape, and white corresponding to "0". The position of the head is indicated by the black ovoid, with the orientation of the head representing the state. Individual tapes are laid out horizontally, with time progressing from top to bottom. The halt state is represented by a rule which maps one state to itself (head doesn't move).
In algorithmic information theory, the Kolmogorov complexity of an object, such as a piece of text, is the length of a shortest computer program that produces the object as output. It is a measure of the computational resources needed to specify the object, and is also known as algorithmic complexity, Solomonoff–Kolmogorov–Chaitin complexity, program-size complexity, descriptive complexity, or algorithmic entropy. It is named after Andrey Kolmogorov, who first published on the subject in 1963 and is a generalization of classical information theory.
In the computer science subfield of algorithmic information theory, a Chaitin constant or halting probability is a real number that, informally speaking, represents the probability that a randomly constructed program will halt. These numbers are formed from a construction due to Gregory Chaitin.
In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.
A Turing machine is a mathematical model of computation describing an abstract machine that manipulates symbols on a strip of tape according to a table of rules. Despite the model's simplicity, it is capable of implementing any computer algorithm.
In computer science, a universal Turing machine (UTM) is a Turing machine capable of computing any computable sequence, as described by Alan Turing in his seminal paper "On Computable Numbers, with an Application to the Entscheidungsproblem". Common sense might say that a universal machine is impossible, but Turing proves that it is possible. He suggested that we may compare a man in the process of computing a real number to a machine which is only capable of a finite number of conditions ; which will be called "m-configurations". He then described the operation of such machine, as described below, and argued:
It is my contention that these operations include all those which are used in the computation of a number.
Hypercomputation or super-Turing computation is a set of hypothetical models of computation that can provide outputs that are not Turing-computable. For example, a machine that could solve the halting problem would be a hypercomputer; so too would one that could correctly evaluate every statement in Peano arithmetic.
In mathematical logic, the arithmetical hierarchy, arithmetic hierarchy or Kleene–Mostowski hierarchy classifies certain sets based on the complexity of formulas that define them. Any set that receives a classification is called arithmetical. The arithmetical hierarchy was invented independently by Kleene (1943) and Mostowski (1946).
In the theory of computation, a tag system is a deterministic model of computation published by Emil Leon Post in 1943 as a simple form of a Post canonical system. A tag system may also be viewed as an abstract machine, called a Post tag machine —briefly, a finite-state machine whose only tape is a FIFO queue of unbounded length, such that in each transition the machine reads the symbol at the head of the queue, deletes a constant number of symbols from the head, and appends to the tail a symbol-string that depends solely on the first symbol read in this transition.
Computability is the ability to solve a problem in an effective manner. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.
In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.
In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running through a state sequence uniquely determined by the string. Deterministic refers to the uniqueness of the computation run. In search of the simplest models to capture finite-state machines, Warren McCulloch and Walter Pitts were among the first researchers to introduce a concept similar to finite automata in 1943.
In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, it is in NP, and any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the Boolean satisfiability problem.
In computability theory Post's theorem, named after Emil Post, describes the connection between the arithmetical hierarchy and the Turing degrees.
Computable functions are the basic objects of study in computability theory. Computable functions are the formalized analogue of the intuitive notion of algorithms, in the sense that a function is computable if there exists an algorithm that can do the job of the function, i.e. given an input of the function domain it can return the corresponding output. Computable functions are used to discuss computability without referring to any concrete model of computation such as Turing machines or register machines. Any definition, however, must make reference to some specific model of computation but all valid definitions yield the same class of functions. Particular models of computability that give rise to the set of computable functions are the Turing-computable functions and the general recursive functions.
In theoretical computer science and mathematical logic a string rewriting system (SRS), historically called a semi-Thue system, is a rewriting system over strings from a alphabet. Given a binary relation between fixed strings over the alphabet, called rewrite rules, denoted by , an SRS extends the rewriting relation to all strings in which the left- and right-hand side of the rules appear as substrings, that is , where , , , and are strings.
A Post–Turing machine is a "program formulation" of a type of Turing machine, comprising a variant of Emil Post's Turing-equivalent model of computation. Post's model and Turing's model, though very similar to one another, were developed independently. Turing's paper was received for publication in May 1936, followed by Post's in October. A Post–Turing machine uses a binary alphabet, an infinite sequence of binary storage locations, and a primitive programming language with instructions for bi-directional movement among the storage locations and alteration of their contents one at a time. The names "Post–Turing program" and "Post–Turing machine" were used by Martin Davis in 1973–1974. Later in 1980, Davis used the name "Turing–Post program".
In logic, finite model theory, and computability theory, Trakhtenbrot's theorem states that the problem of validity in first-order logic on the class of all finite models is undecidable. In fact, the class of valid sentences over finite models is not recursively enumerable.
The following are examples to supplement the article Turing machine.
In computability theory, the mortality problem is a decision problem related to the halting problem. For Turing machines, the halting problem can be stated as follows: Given a Turing machine, and a word, decide whether the machine halts when run on the given word.
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. The halting problem is undecidable, meaning that no general algorithm exists that solves the halting problem for all possible program–input pairs. The problem comes up often in discussions of computability since it demonstrates that some functions are mathematically definable but not computable.