C. Thomas Elliott

Last updated

Charles Thomas Elliott (known as Tom Elliott), CBE FRS (born 16 January 1939), [1] is a scientist in the fields of narrow gap semiconductor and infrared detector research.

Contents

Early life

Hailing from County Durham, he attended Washington Grammar Technical School. After gaining his Ph.D. he worked at the University of Manchester

Career

He joined RRE in Malvern, Worcestershire in the late 1960s. In the 1970s he invented the SPRITE detector (Signal PRocessing In The Element) which was also known as the TED (Tom Elliott's Detector). This was a photoconductor device in which the infrared scene was scanned across the detector (made from HgCdTe) at the same rate as the carriers drifted under an applied controlled constant bias current. This device became part of TICM - the standard UK thermal imaging common module used since the 1980s by UK armed forces. Tom Elliott received a Rank Prize in 1982 for this work and was elected a Fellow of the Royal Society in 1988. He was appointed CBE in the 1994 Birthday Honours. [2]

He won the Clifford Paterson Medal and Prize in 1997.

Tom Elliott also contributed to the development of the semiconductor indium antimonide (InSb) as an infrared detector, magnetic sensor and fast, low voltage transistor material. He was involved in the exploitation of negative luminescence in diode structures.

He retired from the successor to RRE, DERA in 1999 and is an honorary professor at Heriot-Watt University.

Personal life

A conference centre at DERA Malvern (by 2007 QinetiQ) was named 'The Tom Elliott Centre' in his honour when opened by the Princess Royal in 2007. He lives in Malvern.

Bibliography

See also

Related Research Articles

<span class="mw-page-title-main">Diode</span> Electronic component that only allows current to flow in one direction

A diode is a two-terminal electronic component that conducts current primarily in one direction ; it has low resistance in one direction, and high resistance in the other.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the power of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Light-emitting diode</span> Semiconductor and solid state light source

A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light is determined by the energy required for electrons to cross the band gap of the semiconductor. White light is obtained by using multiple semiconductors or a layer of light-emitting phosphor on the semiconductor device.

<span class="mw-page-title-main">Semiconductor device</span> Electronic component that exploits the electronic properties of semiconductor materials

A semiconductor device is an electronic component that relies on the electronic properties of a semiconductor material for its function. Its conductivity lies between conductors and insulators. Semiconductor devices have replaced vacuum tubes in most applications. They conduct electric current in the solid state, rather than as free electrons across a vacuum or as free electrons and ions through an ionized gas.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons.

<span class="mw-page-title-main">Photoresistor</span> Light dependent resistor

A photoresistor is a passive component that decreases resistance with respect to receiving luminosity (light) on the component's sensitive surface. The resistance of a photoresistor decreases with increase in incident light intensity; in other words, it exhibits photoconductivity. A photoresistor can be applied in light-sensitive detector circuits and light-activated and dark-activated switching circuits acting as a resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several megaohms (MΩ), while in the light, a photoresistor can have a resistance as low as a few hundred ohms. If incident light on a photoresistor exceeds a certain frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electrons conduct electricity, thereby lowering resistance. The resistance range and sensitivity of a photoresistor can substantially differ among dissimilar devices. Moreover, unique photoresistors may react substantially differently to photons within certain wavelength bands.

<span class="mw-page-title-main">Thermographic camera</span> Imaging device using infrared radiation

A thermographic camera is a device that creates an image using infrared (IR) radiation, similar to a normal camera that forms an image using visible light. Instead of the 400–700 nanometre (nm) range of the visible light camera, infrared cameras are sensitive to wavelengths from about 1,000 nm to about 14,000 nm (14 μm). The practice of capturing and analyzing the data they provide is called thermography.

The Royal Radar Establishment was a research centre in Malvern, Worcestershire in the United Kingdom. It was formed in 1953 as the Radar Research Establishment by the merger of the Air Ministry's Telecommunications Research Establishment (TRE) and the British Army's Radar Research and Development Establishment (RRDE). It was given its new name after a visit by Queen Elizabeth II in 1957. Both names were abbreviated to RRE. In 1976 the Signals Research and Development Establishment (SRDE), involved in communications research, joined the RRE to form the Royal Signals and Radar Establishment (RSRE).

The Royal Signals and Radar Establishment (RSRE) was a scientific research establishment within the Ministry of Defence (MoD) of the United Kingdom. It was located primarily at Malvern in Worcestershire, England. The RSRE motto was Ubique Sentio.

<span class="mw-page-title-main">Photocathode</span>

A photocathode is a surface engineered to convert light (photons) into electrons using the photoelectric effect. Photocathodes are important in accelerator physics where they are utilised in a photoinjector to generate high brightness electron beams. Electron beams generated with photocathodes are commonly used for free electron lasers and for ultrafast electron diffraction. Photocathodes are also commonly used as the negatively charged electrode in a light detection device such as a photomultiplier or phototube.

<span class="mw-page-title-main">Lead(II) sulfide</span> Chemical compound

Lead(II) sulfide is an inorganic compound with the formula PbS. Galena is the principal ore and the most important compound of lead. It is a semiconducting material with niche uses.

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically photo detector have a p–n junction that converts light photons into current. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Telecommunications Research Establishment</span>

The Telecommunications Research Establishment (TRE) was the main United Kingdom research and development organization for radio navigation, radar, infra-red detection for heat seeking missiles, and related work for the Royal Air Force (RAF) during World War II and the years that followed. It was regarded as "the most brilliant and successful of the English wartime research establishments" under "Rowe, who saw more of the English scientific choices between 1935 and 1945 than any single man."

Negative luminescence is a physical phenomenon by which an electronic device emits less thermal radiation when an electric current is passed through it than it does in thermal equilibrium. When viewed by a thermal camera, an operating negative luminescent device looks colder than its environment.

<span class="mw-page-title-main">Indium antimonide</span> Chemical compound

Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow-gap semiconductor material from the III-V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. The indium antimonide detectors are sensitive between 1–5 μm wavelengths.

<span class="mw-page-title-main">Mercury cadmium telluride</span>

Hg1−xCdxTe or mercury cadmium telluride is a chemical compound of cadmium telluride (CdTe) and mercury telluride (HgTe) with a tunable bandgap spanning the shortwave infrared to the very long wave infrared regions. The amount of cadmium (Cd) in the alloy can be chosen so as to tune the optical absorption of the material to the desired infrared wavelength. CdTe is a semiconductor with a bandgap of approximately 1.5 electronvolts (eV) at room temperature. HgTe is a semimetal, which means that its bandgap energy is zero. Mixing these two substances allows one to obtain any bandgap between 0 and 1.5 eV.

<span class="mw-page-title-main">Crystal detector</span> Early radio receiver component

A crystal detector is an obsolete electronic component used in some early 20th century radio receivers that consists of a piece of crystalline mineral which rectifies the alternating current radio signal. It was employed as a detector (demodulator) to extract the audio modulation signal from the modulated carrier, to produce the sound in the earphones. It was the first type of semiconductor diode, and one of the first semiconductor electronic devices. The most common type was the so-called cat's whisker detector, which consisted of a piece of crystalline mineral, usually galena, with a fine wire touching its surface.

The SPRITE infrared detector is named after the process of signal integration carried out by "Signal Processing In The Element". The technique was invented at the Royal Signals and Radar Establishment at Malvern by a team of scientists including Tom Elliott.

<span class="mw-page-title-main">Oleg Losev</span> Russian scientist and inventor

Oleg Vladimirovich Losev was a Russian scientist and inventor who made significant discoveries in the field of semiconductor junctions and the light emitting diode (LED).

This is a list of infrared topics.

References

  1. Companies House
  2. "No. 53696". The London Gazette (Supplement). 10 June 1994. p. 9.