Royal Radar Establishment

Last updated

The Royal Radar Establishment was a research centre in Malvern, Worcestershire in the United Kingdom. It was formed in 1953 as the Radar Research Establishment by the merger of the Air Ministry's Telecommunications Research Establishment (TRE) and the British Army's Radar Research and Development Establishment (RRDE). It was given its new name after a visit by Queen Elizabeth II in 1957. Both names were abbreviated to RRE. In 1976 the Signals Research and Development Establishment (SRDE), involved in communications research, joined the RRE to form the Royal Signals and Radar Establishment (RSRE).

Contents

The two groups had been closely associated since before the opening of World War II, when the predecessor to RRDE was formed as a small group within the Air Ministry's research centre in Bawdsey Manor in Suffolk. Forced to leave Bawdsey due to its exposed location on the east coast of England, both groups moved several times before finally settling in separate locations in Malvern beginning in May 1942. The merger in 1953 that formed the RRE renamed these as the North Site (RRDE) and South Site (TRE). [1]

The earlier research and development work of TRE and RRDE on radar was expanded into solid state physics, electronics, and computer hardware and software. The RRE's overall scope was extended to include cryogenics and other topics. Infrared detection for guided missiles and heat sensing devices was a major defence application. [2] The SRDE brought satellite communications and fibre optics knowledge.

In 1991 they were partially privatized as part of the Defence Research Agency, which became the Defence Evaluation and Research Agency in 1996. The North Site was closed in 2003 and the work was consolidated at the South Site, while the former North Site was sold off for housing developments. Qinetiq now occupies a part of the former RSRE site.

Administrative history

The earliest concerted effort to develop radar in the UK dates to 1935, and Robert Watt replied to an Air Ministry question about radio-based death rays by stating they were impossible, but using radio as a detection means was possible. After a simple practical demonstration, a prototype system was built at Orfordness on the east coast of England. While on a Sunday drive in the area, Watt noticed the large and unused Bawdsey Manor, and this was leased by the Air Ministry to become first radar research centre in the country. Soon after taking over Bawdsey in 1936, the British Army heard of their efforts and formed a group to work with them to develop ground-based applications. The first project of this "Army Cell" was a ranging system for anti-aircraft artillery, but they soon added the Coast Defence radars and began work on the proximity fuse.

At the outbreak of the war in 1939, the location of Bawdsey, right on the east coast, was considered far too exposed to attack. The Air Ministry team quickly moved to Dundee in Scotland, where the former Air Ministry Experimental Station became the Air Ministry Research Establishment (AMRE). The Army group moved to Christchurch, outside Bournemouth, becoming the Air Defence Experimental Establishment (ADEE). The facilities in Dundee proved far too small and isolated, and in May 1940 they moved again, this time to Worth Matravers on the south coast of England, also a short distance from Bournemouth. This was accompanied by yet another renaming, now becoming the Telecommunications Research Establishment (TRE).

Ultimately they began to worry that this location was also too exposed, and when they heard a German paratroop unit had moved to France directly across the English Channel, they decided to move once again. The ADEE, by this time once again renamed to the Air Defence Research and Development (ADRDE), moved to underutilized Air Ministry buildings on the north side of Malvern in May 1942. This, of course, resulted in yet another name change to the RRDE. The TRE followed shortly thereafter, taking up residence in buildings across from Malvern College on the south side of town.

TRE was part of the Ministry of Supply and, when it was formed, so was RRE. In 1959, control passed to the Ministry of Aviation. When this was abolished in 1967, control passed to the Ministry of Technology, then to the Ministry of Aviation Supply, in 1970, and to the Ministry of Defence in 1971. In 1976 RRE merged with the Signals Research and Development Establishment (SRDE) to form the Royal Signals and Radar Establishment (RSRE), which became part of the Defence Research Agency (DRA) in 1991. Later (1995), DRA was absorbed into DERA, the Defence Evaluation and Research Agency. DERA split on 2 June 2001 into two parts, a government body called Dstl (Defence Science and Technology Laboratory) and a company destined for privatisation, which became QinetiQ.

The technical departments of RRE were grouped, initially, into six Divisions: airborne radar, ground radar, guided weapons, basic techniques, physics, and engineering. The organization and personnel are described further, in a collection of linked web sites. [3]

W. J. Richards, CBE, was Director of TRE at the time of the merger and continued as Director of RRE. William Henry (Bill) Penley, Head of Guided Missiles, took over for a year in 1961. Then George Macfarlane (after postings outside RRE) became Director in 1962. [1]

The Physics Division – some of the staff and their work

At the time of the name change to Radar Research Establishment in 1953, the senior staff included:

Other members of the Physics Division who made significant contributions to several fields of endeavour include:

Demonstration digital clock using Cyanobiphenyl liquid crystals made at RRE in 1973 Cyanobiphenyl LCD clock, RRE, 1973.jpg
Demonstration digital clock using Cyanobiphenyl liquid crystals made at RRE in 1973

In 1956, R.A. Smith presented a comprehensive account of the contributions of RRE to physics to the Royal Society. [2]

Radar, Guided weapons and Engineering Divisions

Gloster Meteor NF.11 fitted with modified radar nose during trials work when allocated to the RRE during 1976. Gloster Meteor NF.11 mod WD790 TRE GC 31.07.76 edited-3.jpg
Gloster Meteor NF.11 fitted with modified radar nose during trials work when allocated to the RRE during 1976.

Although less conspicuous among academic scientists, these divisions were major players in the defence community, both in policy decision making and as an interface with industry. Development and production contracts brought staff of several companies on site, and extramural contracts strengthened ties with industry still further. "in radar alone: Plessey and Decca for aerials and waveguides, Plessey, Hilger & Watts, [44] Clarke Chapman and Curran for millimetre-wave radar, and Mullard for precision bombing and radar reconnaissance". [1] On returning to RRE as Director in 1962, George Macfarlane reorganized the technical departments into: Military and Civil Systems (comprising Ground Radar and Air Traffic Control, Guided Weapons and Airborne Radar groups), Physics and Electronics (comprising Physics and Electronic Groups) and Engineering. "Despite the policy shift away from fighters ... to guided weapons for UK air defence, ... RRE continued to argue for strike aircraft and kept up the necessary radar research programs." [1]

In December 1968, the report on the programming language ALGOL 68 was published. On 20–24 July 1970, a working conference was arranged by the International Federation for Information Processing (IFIP) to discuss the problems of implementing the language. [45] A small team from RRE attended to present their compiler, written by I. F. Currie, Susan G. Bond, and J. D. Morrison. [46] ALGOL 68 was complex: implementing it was estimated to need up to 100 man-years, using multi-pass compilers with up to seven passes. The RRE team described how they had already implemented a one-pass compiler, which was already in production for engineering and scientific uses. It was the first working version of ALGOL 68.

Senior staff, of the divisions at various times included

More than 50 books were written by members of the establishment under its successive names. Details are included in the list of references below, and in the TRE article. Many more were in series that members of the staff edited.

In 1968, the Minister of Supply assured a member of parliament that the results of research at RRE on infra-red detectors would be made available to British industry. [48]

A former member of the RRE, Martin Woodhouse, later became better known as a novelist.

Locations

Related Research Articles

The Royal Signals and Radar Establishment (RSRE) was a scientific research establishment within the Ministry of Defence (MoD) of the United Kingdom. It was located primarily at Malvern in Worcestershire, England. The RSRE motto was Ubique Sentio.

<span class="mw-page-title-main">Automatic Computing Engine</span> British early electronic serial stored-program computer

The Automatic Computing Engine (ACE) was a British early electronic serial stored-program computer design by Alan Turing. Turing completed the ambitious design in late 1945, having had experience in the years prior with the secret Colossus computer at Bletchley Park.

<span class="mw-page-title-main">Telecommunications Research Establishment</span>

The Telecommunications Research Establishment (TRE) was the main United Kingdom research and development organisation for radio navigation, radar, infra-red detection for heat seeking missiles, and related work for the Royal Air Force (RAF) during World War II and the years that followed. It was regarded as "the most brilliant and successful of the English wartime research establishments" under "Rowe, who saw more of the English scientific choices between 1935 and 1945 than any single man."

<span class="mw-page-title-main">Geoffrey Dummer</span> 20th-century English electronics engineer

Geoffrey William Arnold Dummer, MBE (1945), C. Eng., IEE Premium Award, FIEEE, MIEE, USA Medal of Freedom with Bronze Palm was an English electronics engineer and consultant, who is credited as being the first person to popularise the concepts that ultimately led to the development of the integrated circuit, commonly called the microchip, in the late 1940s and early 1950s. Dummer passed the first radar trainers and became a pioneer of reliability engineering at the Telecommunications Research Establishment in Malvern in the 1940s. Dummer studied electrical engineering at Manchester College of Technology starting in the early 1930s. By the early 1940s he was working at the Telecommunications Research Establishment in Malvern.

<span class="mw-page-title-main">Cyril Hilsum</span> British physicist

Cyril Hilsum is a British physicist and academic.

Sir Michael Pepper is a British physicist notable for his work in semiconductor nanostructures.

<span class="mw-page-title-main">Philip Woodward</span> British mathematician (1919–2018)

Philip Mayne Woodward was a British mathematician, radar engineer and horologist. He achieved notable success in all three fields. Before retiring, he was a deputy chief scientific officer at the Royal Signals and Radar Establishment of the British Ministry of Defence in Malvern, Worcestershire.

<span class="mw-page-title-main">Phyllis Nicolson</span> British mathematician (1917–1968)

Phyllis Nicolson was a British mathematician and physicist best known for her work on the Crank–Nicolson method together with John Crank.

Emlyn Huw Rhoderick was a Welsh physicist and academic, who spent 33 years as professor of solid-state electronics at the Manchester College of Science and Technology.

James Robert Atkinson, MA, FInstP, FRSE, FRMetS was a British physicist.

<span class="mw-page-title-main">Albert Rowe (physicist)</span>

Albert Percival Rowe, CBE, often known as Jimmy Rowe or A. P. Rowe, was a radar pioneer and university vice-chancellor. A British physicist and senior research administrator, he played a major role in the development of radar before and during World War II.

<span class="mw-page-title-main">W. A. S. Butement</span>

William Alan Stewart Butement was a New Zealand-born British-Australian defence scientist and public servant. A native of New Zealand, he made extensive contributions to radar development in Great Britain during World War II, served as the first chief scientist for the Australian Defence Scientific Service, then ended his professional career with a research position in private business.

Sir George Gray Macfarlane was a British engineer, scientific administrator and public servant.

The Royal Radar Establishment Automatic Computer (RREAC) was an early solid-state computer in 1962. It was made with transistors; many of Britain's previous experimental computers used the thermionic valve, also known as a vacuum tube.

Ernest Henry Putley was a British scientist and prolific author. He is best known for his work on radar, the Hall Effect, and infra-red spectroscopy.

Robert Allan Smith CBE FRS PRSE was a British mathematician and physicist.

Professor Edward George Sydney Paige FRS, known as Ted Paige, was a British physicist and engineer. His main areas of research were semiconductor devices to improve radar, including work on surface acoustic waves, and optical techniques using programmable phase plates.

<span class="mw-page-title-main">John Robert Mills</span>

John Robert Mills was a British physicist and scientific expert who played an important role in the development of radar and the defence of Britain in World War II. After the war he continued his career working for various British government research establishments on a variety of projects until his retirement in 1977.

The Radar Research and Development Establishment, RRDE for short, was a civilian research organization run by the United Kingdom's Ministry of Supply that primarily studied the development of radar for British Army use.

Susan Bond, was a scientific officer and computer programmer for the Mathematics Division of the Royal Radar Establishment (RRE) in the United Kingdom. She worked extensively on the programming language ALGOL 68 and the Royal Radar Establishment Automatic Computer (RREAC), an early solid-state electronics, ICL 1907F computer.

References

  1. 1 2 3 4 Bud, Robert; Gummett, Philip (2002). Cold War, Hot Science: Applied Research in Britain's Defence Laboratories, 1945–1990. London: Science Museum. p. 249. ISBN   978-1-900747-47-9.
  2. 1 2 3 Smith, R. A. (10 April 1956). "Physics at the Radar Research Establishment, Malvern". Proceedings of the Royal Society of London, Series A. 235 (1200): 1–10. Bibcode:1956RSPSA.235....1S. doi:10.1098/rspa.1956.0060. S2CID   110025325.
  3. "The Penley Archives". purbeckradar.org.uk.
  4. 1 2 3 4 Smith, S. D. (1982). "Robert Allan Smith". Biographical Memoirs of Fellows of the Royal Society. 28: 479–504. doi:10.1098/rsbm.1982.0019. S2CID   57497979.
  5. Smith, R. A. (1947). Radio aids to navigation. Cambridge University Press.
  6. Smith, R. A. (1949). Aerials for metre and decimetre wavelengths. Cambridge University Press.
  7. Smith, R. A. (1952). The physical principles of thermodynamics; a treatise for students of theoretical and experimental physics. London: Chapman & Hall.
  8. 1 2 Smith, R. A.; Jones, F. E. & Chasmar, R. P. (1968). The detection and measurement of infra-red radiation. Oxford: Clarendon Press.
  9. Smith, R. A. (1978). Semiconductors. Cambridge: Cambridge University Press.
  10. Smith, R. A. (1961). Wave mechanics of crystalline solids. London: Chapman & Hall.
  11. Smith, R. A., ed. (1976). Very high resolution spectroscopy. New York: Academic Press. ISBN   978-0-12-651650-0.
  12. "Sir George Macfarlane: Talented technologist who made invaluable contributions in wartime and as a postwar public servant" . The Times.
  13. Penley, W. H. (30 July 2007). "Obituary: Sir George Macfarlane". The Guardian. Retrieved 23 July 2013.
  14. Loudon, R.; Paige, E. G. S. (1991). "Alan Frank Gibson. 30 May 1923–27 March 1988". Biographical Memoirs of Fellows of the Royal Society. 37: 221–244. doi:10.1098/rsbm.1991.0011. S2CID   72810322.
  15. Key, M. (7 February 2006). Adventures in laser produced plasma research (PDF). Lawrence Livermore National Laboratory.
  16. Raynes, E. P. (2008). "Paige, Edward George Sydney (Ted) (1930–2004)". Oxford Dictionary of National Biography. Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/94097.(Subscription or UK public library membership required.)
  17. Sondheimer, Ernst (1977). "Professor Leo Pincherle (obituary)". Nature. 266 (5998): 202. doi: 10.1038/266202b0 . S2CID   4176689.
  18. 1 2 Bell, D. G.; Hum, D. M.; Pincherle, L.; Sciama, D. W.; Woodward, P. M. (1953). "The electronic band structure of PbS". Proceedings of the Royal Society of London A. 217 (1128): 71–91. Bibcode:1953RSPSA.217...71B. doi:10.1098/rspa.1953.0046. S2CID   119847450.
  19. Pincherle, L. (1971). Electronic energy bands in solids. London: Macdonald.
  20. Pincherle, L. (1966). Worked problems in heat, thermodynamics, and kinetic theory for physics students . Oxford: Pergamon Press.
  21. Smith, Derek J. (2002). "Short Term Memory Subtypes in Computing and Artificial Intelligence" (PDF). pp. 79 & 104.
  22. Moore, Kevin. "The History of Flight-Sim". Archived from the original on 17 May 2011.
  23. Rolfe, J. M.; Staples, K. J. (1986). Flight Simulation . Cambridge University Press. ISBN   978-0-521-35751-7.
  24. 1 2 Clark, David J. (2002). "Enclosing the Field from 'Mechanisation of Thought Processes' to 'Autonomics'". University of Warwick. pp. 103–110.
  25. Uttley, A. M. (1977). "Methods of simulating the behaviour of granule cells in hippocampus based on informon theory". Journal of Theoretical Biology. 69 (3): 391–399. Bibcode:1977JThBi..69..391U. doi:10.1016/0022-5193(77)90147-3. PMID   607012.
  26. Woodward, Philip (1953). Probability and Information Theory, with Applications to Radar. London: Pergamon Press. ISBN   978-0-89006-103-9.
  27. "Retired scientist given award". Malvern Gazette. 2 July 2009. Retrieved 6 July 2009.
  28. Woodward, P. M. (1970). Official Definition of CORAL 66. HMSO. pp. vii+58. ISBN   978-0-11-470221-2.
  29. Barnett, M. P., The evaluation of molecular integrals by the zeta-function method, in Methods in computational physics, vol. 2, Quantum Mechanics, ed. B. Alder, S. Fernbach and M. Rotenberg, 95–153, Academic Press, New York, 1963.
  30. Barnett, Michael P. (1965). Computer typesetting, experiments and prospects. Cambridge, Mass.: MIT Press.
  31. Manzer, D.F., & Barnett, M. P., Analysis by Simulation: Programming techniques for a High-Speed Digital Computer, in Arthur Maas et al, Design of Water Resource Systems, pp. 324–390, Harvard University Press, Cambridge, MA, 1962.
  32. Barnett, M. P.; Barnett, S. J. (1986). "Animated algorithms – a self-teaching course in data structures and fundamental algorithms". New York: McGraw-Hill.{{cite journal}}: Cite journal requires |journal= (help)
  33. Butcher, P. N.; March, N. H.; Tosi, M. P., eds. (1986). Crystalline semiconducting materials and devices . New York: Plenum Press. ISBN   978-0-306-42154-9.
  34. Butcher, P. N.; Cotter, D. (1990). The elements of nonlinear optics. Cambridge: Cambridge University Press. ISBN   978-0-521-34183-7.
  35. Butcher, P. N.; March, N. H.; Tosi, M. P., eds. (1993). Physics of low-dimensional semiconductor structures. New York: Plenum Press. ISBN   978-0-306-44170-7.
  36. Butcher, P. N.; Yu, Lu, eds. (1992). Superconductivity : from basic physics to the latest developments. Trieste, Italy: International Centre for Theoretical Physics. ISBN   978-981-02-2456-1.
  37. "Geoffrey Chester". Cornell University Department of Physics. Archived from the original on 6 July 2011.
  38. Gray, George W. (January 1998). "Reminiscences from a life with liquid crystals". Liquid Crystals. 24 (1): 5–14. doi:10.1080/026782998207523.
  39. "Liquid Crystal Displays (1973-1982)". Malvern Radar and Technology History Society. 2016. Retrieved 22 September 2021.
  40. 1 2 3 "Prizes awarded by the Optoelectronics Fund". rankprize.org. Archived from the original on 29 October 2013.
  41. Born, Max (1989). Blin-Stoyle, Roger John; Radcliffe, J. M. (eds.). Atomic Physics (8th revised ed.). New York: Dover Publications. ISBN   978-0-48665-984-8.
  42. Sciama, D. W. (1971). Modern cosmology. Cambridge: Cambridge University Press.
  43. Sciama, D. W. (1993). Modern cosmology and the dark matter problem. Cambridge: Cambridge University Press.
  44. "Amalgamation of Instrument Makers : Hilger and Watts, Ltd". Nature. 161 (161): 345. 1948. Bibcode:1948Natur.161Q.345.. doi: 10.1038/161345a0 . S2CID   28106213.
  45. Peck, J.E.L., ed. (1970), Proceedings of the IFIP working conference on ALGOL 68 Implementation, Munich: North-Holland, ISBN   0-7204-2045-8
  46. Bond, Susan; Abbate, Janet (26 September 2001). "Oral-History: Susan Bond: Developing the World's First ALGOL 68 Compiler". Engineering and Technology History Wiki (ETHW). Institute of Electrical and Electronics Engineers (IEEE). Retrieved 22 April 2020 via United Engineering Foundation (UEF).
  47. "Dr. W.H. (Bill) Penley". Penley Radar Archives.
  48. Gerald Fowler, Parliamentary Secretary, Ministry of Technology (4 March 1968). "Royal Radar Establishment, Malvern". Parliamentary Debates (Hansard) . House of Commons. col. 9W–11W.