CBS domain

Last updated
CBS domain
PDB 2nye EBI.png
Structure of the yeast SNF4 protein that contains four CBS domains. [1] This protein is part of the AMP-activated protein kinase (AMPK) complex.
Identifiers
SymbolCBS
Pfam PF00571
InterPro IPR000644
SMART CBS
PROSITE PS51371
SCOP2 1zfj / SCOPe / SUPFAM
CDD cd02205
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1ak5 , 1b3o , 1jcn , 1jr1 , 1lrt , 1me7 , 1me8 , 1me9 , 1meh , 1mei , 1mew , 1nf7 , 1nfb , 1o50 , 1pbj , 1pvm , 1pvn , 1vr9 , 1vrd , 1xkf , 1y5h , 1yav , 1zfj , 2cu0 , 2d4z , 2ef7 , 2j9l , 2nyc , 2nye , 2o16 , 2oox , 2oux , 2qh1 , 2rc3 , 2rif , 2rih , 2v8q , 2v92 , 2v9j , 2yvx , 2yzi , 2yzq , 3ddj

In molecular biology, the CBS domain is a protein domain found in a range of proteins in all species from bacteria to humans. It was first identified as a conserved sequence region in 1997 and named after cystathionine beta synthase, one of the proteins it is found in. [2] CBS domains are also found in a wide variety of other proteins such as inosine monophosphate dehydrogenase, [3] voltage gated chloride channels [4] [5] [6] [7] [8] and AMP-activated protein kinase (AMPK). [9] [10] CBS domains regulate the activity of associated enzymatic and transporter domains in response to binding molecules with adenosyl groups such as AMP and ATP, or s-adenosylmethionine. [11]

Contents

Structure

The CBS domain is composed of a beta-alpha-beta-beta-alpha secondary structure pattern that is folded into a globular tertiary structure that contains a three-stranded antiparallel β-sheet with two α-helices on one side. CBS domains are always found in pairs in protein sequences and each pair of these domains tightly associate in a pseudo dimeric arrangement through their β-sheets forming a so-called CBS-pair or Bateman domain. [12] [13] These CBS domain pairs can associate in a head-to-head (i.e. PDB codes 3KPC , 1PVM , 2OOX ) or a head-to-tail (i.e. PDB codes 1O50 , 1PBJ ) manner forming a disk-like compact structure. By doing so, they form clefts that constitute the canonical ligand binding regions. [14] [15] [16] [17] [18] In principle, the number of canonical binding sites matches the number of CBS domains within the molecule and are traditionally numbered according to the CBS domain that contains each of the conserved aspartate residues that potentially interact with the ribose of the nucleotides. [19] However, not all of these cavities might necessarily bind nucleotides or be functional. Recently, a non-canonical site for AMP has also been described in protein MJ1225 from M. jannaschii, though its functional role is still unknown. [20]

Multiple sequence alignment of CBS domains showing secondary structures above. Yellow arrows represent beta strands and red boxes alpha helices. CBS domain alignment.png
Multiple sequence alignment of CBS domains showing secondary structures above. Yellow arrows represent beta strands and red boxes alpha helices.

Ligand binding

It has been shown that CBS domains bind to adenosyl groups in molecules such as AMP and ATP, [11] or s-adenosylmethionine, [21] but they may also bind metallic ions such as Mg2+. [22] [23] Upon binding these different ligands the CBS domains regulate the activity of associated enzymatic domains. [24] The molecular mechanisms underlying this regulation are just starting to be elucidated. [16] [17] [21] [22] [25] At the moment, two different type of mechanisms have been proposed. The first one claims that the nucleotide portion of the ligand induces essentially no change in the protein structure, the electrostatic potential at the binding site being the most significant property of adenosine nucleotide binding. [17] [26] This "static" response would be involved in processes in which regulation by energy charge would be advantageous. [17] [26] On the contrary, the second type of mechanism (denoted as "dynamic") involves dramatic conformational changes in the protein structure upon ligand binding and has been reported for the cytosolic domain of the Mg2+ transporter MgtE from Thermus thermophilus , [22] the unknown function protein MJ0100 from M. jannaschii [21] [27] and the regulatory region of Clostridium perfringens pyrophosphatase. [28]

Associated domains

CBS domains are often found in proteins that contain other domains. These domains are usually enzymatic, membrane transporters or DNA-binding domains. However, proteins that contain only CBS domains are also often found, particularly in prokaryotes. These standalone CBS domain proteins might form complexes upon binding to other proteins such as kinases to which they interact with and regulate.

Example protein domains found associated with CBS domains CBS domain architectures.png
Example protein domains found associated with CBS domains

Mutations leading to disease

Mutations in some human CBS domain-containing proteins leads to genetic diseases. [3] For example, mutations in the cystathionine beta synthase protein lead to an inherited disorder of the metabolism called homocystinuria (OMIM: 236200). [29] Mutations in the gamma subunit of the AMPK enzyme have been shown to lead to familial hypertrophic cardiomyopathy with Wolff–Parkinson–White syndrome (OMIM: 600858). Mutations in the CBS domains of the IMPDH enzyme lead to the eye condition retinitis pigmentosa (OMIM: 180105).

Humans have a number of voltage-gated chloride channel genes, and mutations in the CBS domains of several of these have been identified as the cause of genetic diseases. Mutations in CLCN1 lead to myotonia (OMIM: 160800), [30] mutations in CLCN2 can lead to idiopathic generalised epilepsy (OMIM: 600699), mutations in CLCN5 can lead to Dent's disease (OMIM: 300009), mutations in CLCN7 can lead to osteopetrosis (OMIM: 259700), [31] and mutations in CLCNKB can lead to Bartter syndrome (OMIM: 241200).

Related Research Articles

<span class="mw-page-title-main">Adenosine monophosphate</span> Chemical compound

Adenosine monophosphate (AMP), also known as 5'-adenylic acid, is a nucleotide. AMP consists of a phosphate group, the sugar ribose, and the nucleobase adenine. It is an ester of phosphoric acid and the nucleoside adenosine. As a substituent it takes the form of the prefix adenylyl-.

<span class="mw-page-title-main">AMP-activated protein kinase</span> Class of enzymes

5' AMP-activated protein kinase or AMPK or 5' adenosine monophosphate-activated protein kinase is an enzyme that plays a role in cellular energy homeostasis, largely to activate glucose and fatty acid uptake and oxidation when cellular energy is low. It belongs to a highly conserved eukaryotic protein family and its orthologues are SNF1 in yeast, and SnRK1 in plants. It consists of three proteins (subunits) that together make a functional enzyme, conserved from yeast to humans. It is expressed in a number of tissues, including the liver, brain, and skeletal muscle. In response to binding AMP and ADP, the net effect of AMPK activation is stimulation of hepatic fatty acid oxidation, ketogenesis, stimulation of skeletal muscle fatty acid oxidation and glucose uptake, inhibition of cholesterol synthesis, lipogenesis, and triglyceride synthesis, inhibition of adipocyte lipogenesis, inhibition of adipocyte lipolysis, and modulation of insulin secretion by pancreatic β-cells.

<span class="mw-page-title-main">Cystic fibrosis transmembrane conductance regulator</span> Mammalian protein found in humans

Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the CFTR gene.

<span class="mw-page-title-main">Chloride channel</span> Class of transport proteins

Chloride channels are a superfamily of poorly understood ion channels specific for chloride. These channels may conduct many different ions, but are named for chloride because its concentration in vivo is much higher than other anions. Several families of voltage-gated channels and ligand-gated channels have been characterized in humans.

<span class="mw-page-title-main">ATP-binding cassette transporter</span> Gene family

The ATP-binding cassette transporters are a transport system superfamily that is one of the largest and possibly one of the oldest gene families. It is represented in all extant phyla, from prokaryotes to humans. ABC transporters belong to translocases.

c-Raf Mammalian protein found in Homo sapiens

RAF proto-oncogene serine/threonine-protein kinase, also known as proto-oncogene c-RAF or simply c-Raf or even Raf-1, is an enzyme that in humans is encoded by the RAF1 gene. The c-Raf protein is part of the ERK1/2 pathway as a MAP kinase (MAP3K) that functions downstream of the Ras subfamily of membrane associated GTPases. C-Raf is a member of the Raf kinase family of serine/threonine-specific protein kinases, from the TKL (Tyrosine-kinase-like) group of kinases.

Transporter associated with antigen processing (TAP) protein complex belongs to the ATP-binding-cassette transporter family. It delivers cytosolic peptides into the endoplasmic reticulum (ER), where they bind to nascent MHC class I molecules.

<span class="mw-page-title-main">CLCN1</span> Protein-coding gene in the species Homo sapiens

The CLCN family of voltage-dependent chloride channel genes comprises nine members which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regulates the electric excitability of the skeletal muscle membrane. Mutations in this gene cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen).

<span class="mw-page-title-main">FLNA</span> Protein-coding gene in humans

Filamin A, alpha (FLNA) is a protein that in humans is encoded by the FLNA gene.

<span class="mw-page-title-main">CLCN5</span> Mammalian protein found in humans

The CLCN5 gene encodes the chloride channel Cl-/H+ exchanger ClC-5. ClC-5 is mainly expressed in the kidney, in particular in proximal tubules where it participates to the uptake of albumin and low-molecular-weight proteins, which is one of the principal physiological role of proximal tubular cells. Mutations in the CLCN5 gene cause an X-linked recessive nephropathy named Dent disease characterized by excessive urinary loss of low-molecular-weight proteins and of calcium (hypercalciuria), nephrocalcinosis and nephrolithiasis.

<span class="mw-page-title-main">GNAQ</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(q) subunit alpha is a protein that in humans is encoded by the GNAQ gene. Together with GNA11, it functions as a Gq alpha subunit.

<span class="mw-page-title-main">PRKAR1A</span> Protein-coding gene in the species Homo sapiens

cAMP-dependent protein kinase type I-alpha regulatory subunit is an enzyme that in humans is encoded by the PRKAR1A gene.

<span class="mw-page-title-main">CLCN2</span> Protein-coding gene in the species Homo sapiens

Chloride channel protein 2 is a protein that in humans is encoded by the CLCN2 gene. Mutations of this gene have been found to cause leukoencephalopathy and Idiopathic generalised epilepsy, although the latter claim has been disputed. CLCN2 contains a transmembrane region that is involved in chloride ion transport as well two intracellular copies of the CBS domain.

<span class="mw-page-title-main">CLCN7</span> Protein-coding gene in the species Homo sapiens

Chloride channel 7 alpha subunit also known as H+/Cl exchange transporter 7 is a protein that in humans is encoded by the CLCN7 gene. In melanocytic cells this gene is regulated by the Microphthalmia-associated transcription factor.

<span class="mw-page-title-main">GNAT2</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(t) subunit alpha-2 is a protein that in humans is encoded by the GNAT2 gene.

<span class="mw-page-title-main">CLCN4</span> Protein-coding gene in humans

H(+)/Cl(-) exchange transporter 4 is a protein that in humans is encoded by the CLCN4 gene.

<span class="mw-page-title-main">CLCNKA</span> Protein-coding gene in the species Homo sapiens

Chloride channel protein ClC-Ka is a protein that in humans is encoded by the CLCNKA gene. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">GNA11</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein subunit alpha-11 is a protein that in humans is encoded by the GNA11 gene. Together with GNAQ, it functions as a Gq alpha subunit.

EamA is a protein domain found in a wide range of proteins including the Erwinia chrysanthemi PecM protein, which is involved in pectinase, cellulase and blue pigment regulation, the Salmonella typhimurium PagO protein, and some members of the solute carrier family group 35 (SLC35) nucleoside-sugar transporters. Many members of this family have no known function and are predicted to be integral membrane proteins and many of the proteins contain two copies of the domain.

The cation-chloride cotransporter (CCC) family is part of the APC superfamily of secondary carriers. Members of the CCC family are found in animals, plants, fungi and bacteria. Most characterized CCC family proteins are from higher eukaryotes, but one has been partially characterized from Nicotiana tabacum, and homologous ORFs have been sequenced from Caenorhabditis elegans (worm), Saccharomyces cerevisiae (yeast) and Synechococcus sp.. The latter proteins are of unknown function. These proteins show sequence similarity to members of the APC family. CCC family proteins are usually large, and possess 12 putative transmembrane spanners (TMSs) flanked by large N-terminal and C-terminal hydrophilic domains.

References

  1. PDB: 2nye ; Rudolph MJ, Amodeo GA, Iram SH, Hong SP, Pirino G, Carlson M, Tong L (January 2007). "Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding". Structure. 15 (1): 65–74. doi: 10.1016/j.str.2006.11.014 . PMID   17223533.
  2. Bateman A (January 1997). "The structure of a domain common to archaebacteria and the homocystinuria disease protein". Trends Biochem. Sci. 22 (1): 12–3. doi:10.1016/S0968-0004(96)30046-7. PMID   9020585.
  3. 1 2 Ignoul S, Eggermont J (December 2005). "CBS domains: structure, function, and pathology in human proteins". Am. J. Physiol., Cell Physiol. 289 (6): C1369–78. doi:10.1152/ajpcell.00282.2005. PMID   16275737.
  4. Ponting CP (March 1997). "CBS domains in CIC chloride channels implicated in myotonia and nephrolithiasis (kidney stones)". J. Mol. Med. 75 (3): 160–3. PMID   9106071.
  5. Meyer S, Dutzler R (February 2006). "Crystal structure of the cytoplasmic domain of the chloride channel ClC-0". Structure. 14 (2): 299–307. doi: 10.1016/j.str.2005.10.008 . PMID   16472749.
  6. Yusef YR, Zúñiga L, Catalán M, Niemeyer MI, Cid LP, Sepúlveda FV (April 2006). "Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain". J. Physiol. 572 (Pt 1): 173–81. doi:10.1113/jphysiol.2005.102392. PMC   1779660 . PMID   16469788.
  7. Markovic S, Dutzler R (June 2007). "The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface". Structure. 15 (6): 715–25. doi: 10.1016/j.str.2007.04.013 . PMID   17562318.
  8. Meyer S, Savaresi S, Forster IC, Dutzler R (January 2007). "Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5". Nat. Struct. Mol. Biol. 14 (1): 60–7. doi:10.1038/nsmb1188. PMID   17195847. S2CID   20733119.
  9. Day P, Sharff A, Parra L, et al. (May 2007). "Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP". Acta Crystallogr. D. 63 (Pt 5): 587–96. doi:10.1107/S0907444907009110. PMID   17452784.
  10. Rudolph MJ, Amodeo GA, Iram SH, et al. (January 2007). "Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding". Structure. 15 (1): 65–74. doi: 10.1016/j.str.2006.11.014 . PMID   17223533.
  11. 1 2 Kemp BE (January 2004). "Bateman domains and adenosine derivatives form a binding contract". J. Clin. Invest. 113 (2): 182–4. doi:10.1172/JCI20846. PMC   311445 . PMID   14722609.
  12. Kemp BE (January 2004). "Bateman domains and adenosine derivatives form a binding contract". J. Clin. Invest. 113 (2): 182–4. doi:10.1172/JCI20846. PMC   311445 . PMID   14722609.
  13. Zhang R, Evans G, Rotella FJ, Westbrook EM, Beno D, Huberman E, Joachimiak A, Collart FR (April 1999). "Characteristics and crystal structure of bacterial inosine-5'-monophosphate dehydrogenase". Biochemistry. 38 (15): 4691–700. CiteSeerX   10.1.1.488.2542 . doi:10.1021/bi982858v. PMID   10200156.
  14. Rudolph MJ, Amodeo GA, Iram SH, Hong SP, Pirino G, Carlson M, Tong L (January 2007). "Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding". Structure. 15 (1): 65–74. doi: 10.1016/j.str.2006.11.014 . PMID   17223533.
  15. Meyer S, Savaresi S, Forster IC, Dutzler R (January 2007). "Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5". Nat. Struct. Mol. Biol. 14 (1): 60–7. doi:10.1038/nsmb1188. PMID   17195847. S2CID   20733119.
  16. 1 2 Amodeo GA, Rudolph MJ, Tong L (September 2007). "Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1". Nature. 449 (7161): 492–5. doi:10.1038/nature06127. PMID   17851534. S2CID   4342092.
  17. 1 2 3 4 Townley R, Shapiro L (March 2007). "Crystal structures of the adenylate sensor from fission yeast AMP-activated protein kinase". Science. 315 (5819): 1726–9. doi: 10.1126/science.1137503 . PMID   17289942. S2CID   38983201.
  18. Jin X, Townley R, Shapiro L (October 2007). "Structural insight into AMPK regulation: ADP comes into play". Structure. 15 (10): 1285–95. doi: 10.1016/j.str.2007.07.017 . PMID   17937917.
  19. Kemp BE, Oakhill JS, Scott JW (October 2007). "AMPK structure and regulation from three angles". Structure. 15 (10): 1161–3. doi: 10.1016/j.str.2007.09.006 . PMID   17937905.
  20. Gómez-García I, Oyenarte I, Martínez-Cruz LA (May 2010). "The Crystal Structure of Protein MJ1225 from Methanocaldococcus jannaschii Shows Strong Conservation of Key Structural Features Seen in the Eukaryal gamma-AMPK". J Mol Biol. 399 (1): 53–70. doi:10.1016/j.jmb.2010.03.045. PMID   20382158.
  21. 1 2 3 Lucas M, Encinar JA, Arribas EA, Oyenarte I, García IG, Kortazar D, Fernández JA, Mato JM, Martínez-Chantar ML, Martínez-Cruz LA (February 2010). "Binding of S-methyl-5'-thioadenosine and S-adenosyl-L-methionine to protein MJ0100 triggers an open-to-closed conformational change in its CBS motif pair". J. Mol. Biol. 396 (3): 800–20. doi:10.1016/j.jmb.2009.12.012. PMID   20026078.
  22. 1 2 3 Ishitani R, Sugita Y, Dohmae N, Furuya N, Hattori M, Nureki O (October 2008). "Mg2+-sensing mechanism of Mg2+ transporter MgtE probed by molecular dynamics study". Proc. Natl. Acad. Sci. U.S.A. 105 (40): 15393–8. doi: 10.1073/pnas.0802991105 . PMC   2563093 . PMID   18832160.
  23. Hattori M, Nureki O (March 2008). "[Structural basis for the mechanism of Mg2 homeostasis by MgtE transporter]". Tanpakushitsu Kakusan Koso (in Japanese). 53 (3): 242–8. PMID   18326297.
  24. Scott JW, Hawley SA, Green KA, et al. (January 2004). "CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations". J. Clin. Invest. 113 (2): 274–84. doi:10.1172/JCI19874. PMC   311435 . PMID   14722619.
  25. Tuominen H, Salminen A, Oksanen E, Jämsen J, Heikkilä O, Lehtiö L, Magretova NN, Goldman A, Baykov AA, Lahti R (May 2010). "Crystal structures of the CBS and DRTGG domains of the regulatory region of Clostridiumperfringens pyrophosphatase complexed with the inhibitor, AMP, and activator, diadenosine tetraphosphate". J. Mol. Biol. 398 (3): 400–13. doi:10.1016/j.jmb.2010.03.019. PMID   20303981.
  26. 1 2 Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR, Carling D, Gamblin SJ (September 2007). "Structural basis for AMP binding to mammalian AMP-activated protein kinase". Nature. 449 (7161): 496–500. doi:10.1038/nature06161. PMID   17851531. S2CID   4345919.
  27. Lucas M, Kortazar D, Astigarraga E, et al. (October 2008). "Purification, crystallization and preliminary X-ray diffraction analysis of the CBS-domain pair from the Methanococcus jannaschii protein MJ0100". Acta Crystallographica Section F. 64 (Pt 10): 936–41. doi:10.1107/S1744309108027930. PMC   2564890 . PMID   18931440.
  28. Tuominen H, Salminen A, Oksanen E, et al. (May 2010). "Crystal Structures of the CBS and DRTGG Domains of the Regulatory Region of Clostridium perfringens Pyrophosphatase Complexed with the Inhibitor, AMP, and Activator, Diadenosine Tetraphosphate". J Mol Biol. 398 (3): 400–413. doi:10.1016/j.jmb.2010.03.019. PMID   20303981.
  29. Shan X, Dunbrack RL, Christopher SA, Kruger WD (March 2001). "Mutations in the regulatory domain of cystathionine beta synthase can functionally suppress patient-derived mutations in cis". Hum. Mol. Genet. 10 (6): 635–43. doi: 10.1093/hmg/10.6.635 . PMID   11230183.
  30. Pusch M (April 2002). "Myotonia caused by mutations in the muscle chloride channel gene CLCN1". Hum. Mutat. 19 (4): 423–34. doi: 10.1002/humu.10063 . PMID   11933197.
  31. Cleiren E, Bénichou O, Van Hul E, et al. (December 2001). "Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the ClCN7 chloride channel gene". Hum. Mol. Genet. 10 (25): 2861–7. doi: 10.1093/hmg/10.25.2861 . PMID   11741829.