CLDN1

Last updated
CLDN1
Identifiers
Aliases CLDN1 , CLD1, ILVASC, SEMP1, claudin 1
External IDs OMIM: 603718 MGI: 1276109 HomoloGene: 9620 GeneCards: CLDN1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_021101

NM_016674

RefSeq (protein)

NP_066924

NP_057883

Location (UCSC) Chr 3: 190.31 – 190.32 Mb Chr 16: 26.18 – 26.19 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Claudin-1 is a protein that in humans is encoded by the CLDN1 gene. [5] [6] It belongs to the group of claudins.

Contents

Function

Tight junctions represent one mode of cell-to-cell adhesion in epithelial or endothelial cell sheets, forming continuous seals around cells and serving as a physical barrier to prevent solutes and water from passing freely through the paracellular space. These junctions are composed of sets of continuous networking strands in the outwardly facing cytoplasmic leaflet, with complementary grooves in the inwardly facing extracytoplasmic leaflet. The protein encoded by this gene, a member of the claudin family, is an integral membrane protein and a component of tight junction strands. Loss of function mutations result in neonatal ichthyosis-sclerosing cholangitis syndrome. [7]

Interactions

CLDN1 has been shown to interact with CLDN5 [8] and CLDN3. [8]

Related Research Articles

<span class="mw-page-title-main">Occludin</span> Mammalian protein found in Homo sapiens

Occludin is a transmembrane protein that regulates the permeability of epithelial and endothelial barriers. It was first identified in epithelial cells as a 65 kDa integral plasma-membrane protein localized at the tight junctions. Together with Claudins, and zonula occludens-1 (ZO-1), occludin has been considered a staple of tight junctions, and although it was shown to regulate the formation, maintenance, and function of tight junctions, its precise mechanism of action remained elusive and most of its actions were initially attributed to conformational changes following selective phosphorylation, and its redox-sensitive dimerization. However, mounting evidence demonstrated that occludin is not only present in epithelial/endothelial cells, but is also expressed in large quantities in cells that do not have tight junctions but have very active metabolism: pericytes, neurons and astrocytes, oligodendrocytes, dendritic cells, monocytes/macrophages lymphocytes, and myocardium. Recent work, using molecular modeling, supported by biochemical and live-cell experiments in human cells demonstrated that occludin is a NADH oxidase that influences critical aspects of cell metabolism like glucose uptake, ATP production and gene expression. Furthermore, manipulation of occludin content in human cells is capable of influencing the expression of glucose transporters, and the activation of transcription factors like NFkB, and histone deacetylases like sirtuins, which proved capable of diminishing HIV replication rates in infected human macrophages under laboratory conditions.

<span class="mw-page-title-main">Tight junction protein 1</span> Protein found in humans

Zonula occludens-1 ZO-1, also known as Tight junction protein-1 is a 220-kD peripheral membrane protein that is encoded by the TJP1 gene in humans. It belongs to the family of zonula occludens proteins, which are tight junction-associated proteins and of which, ZO-1 is the first to be cloned. It was first isolated in 1986 by Stevenson and Goodenough using a monoclonal antibody raised in rodent liver to recognise a 225-kD polypeptide in whole liver homogenates and in tight junction-enriched membrane fractions. It has a role as a scaffold protein which cross-links and anchors Tight Junction (TJ) strand proteins, which are fibril-like structures within the lipid bilayer, to the actin cytoskeleton.

<span class="mw-page-title-main">Tight junction protein 2</span> Protein found in humans

Tight junction protein ZO-2 is a protein that in humans is encoded by the TJP2 gene.

<span class="mw-page-title-main">CLDN4</span> Protein-coding gene in the species Homo sapiens

Claudin 4, also known as CLDN4, is a protein which in humans is encoded by the CLDN4 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN5</span> Protein-coding gene in the species Homo sapiens

Claudin-5 is a protein that in humans is encoded by the CLDN5 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN3</span> Protein-coding gene in the species Homo sapiens

Claudin 3, also known as CLDN3, is a protein which in humans is encoded by the CLDN3 gene. It is a member of the claudin protein family.

<span class="mw-page-title-main">CLDN7</span> Protein-coding gene in humans

Claudin-7 is a protein that in humans is encoded by the CLDN7 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN6</span> Protein-coding gene in the species Homo sapiens

Claudin-6 is a protein that in humans is encoded by the CLDN6 gene. It belongs to the group of claudins. The knockout mice of mouse homolog exhibit no phenotype, indicating that claudin-6 is dispensable for normal development and homeostasis.

<span class="mw-page-title-main">CLDN2</span> Protein-coding gene in humans

Claudin-2 is a protein that in humans is encoded by the CLDN2 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN12</span> Protein-coding gene in the species Homo sapiens

Claudin-12 is a protein that in humans is encoded by the CLDN12 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN8</span> Protein-coding gene in the species Homo sapiens

Claudin-8 is a protein that in humans is encoded by the CLDN8 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN11</span> Protein-coding gene in the species Homo sapiens

Claudin-11 is a protein that in humans is encoded by the CLDN11 gene. It belongs to the group of claudins and was the first member of the family to be knocked out in mice, thereby demonstrating the central role of claudins for intramembranous strands observed in freeze-fracture images.

<span class="mw-page-title-main">CLDN16</span> Protein-coding gene in the species Homo sapiens

Claudin-16 is a protein that in humans is encoded by the CLDN16 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN9</span> Protein-coding gene in the species Homo sapiens

Claudin-9 is a protein that in humans is encoded by the CLDN9 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN17</span> Protein-coding gene in the species Homo sapiens

Claudin-17 is a protein that in humans is encoded by the CLDN17 gene. It belongs to the group of claudins; claudins are cell-cell junction proteins that keep that maintains cell- and tissue-barrier function. It forms anion-selective paracellular channels and is localized mainly in kidney proximal tubules.

<span class="mw-page-title-main">CLDN10</span> Protein-coding gene in the species Homo sapiens

Claudin-10 is a protein that in humans is encoded by the CLDN10 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN15</span> Protein-coding gene in the species Homo sapiens

Claudin-15 is a protein that in humans is encoded by the CLDN15 gene. It belongs to the group of claudins. Among its related pathways are Blood-Brain Barrier and Immune Cell Transmigration: VCAM-1/CD106 Signaling Pathways and Tight junction. GO annotations related to this gene include identical protein binding and structural molecule activity. An important paralog of this gene is CLDN10.

<span class="mw-page-title-main">CLDN20</span> Protein-coding gene in the species Homo sapiens

Claudin-20 is a protein that in humans is encoded by the CLDN20 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">CLDN18</span> Protein-coding gene in the species Homo sapiens

Claudin-18 is a protein that in humans is encoded by the CLDN18 gene. It belongs to the group of claudins.

<span class="mw-page-title-main">TJP3</span> Protein-coding gene in the species Homo sapiens

Tight junction protein ZO-3 is a protein that in humans is encoded by the TJP3 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000163347 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022512 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Halford S, Spencer P, Greenwood J, Winton H, Hunt DM, Adamson P (Jun 2000). "Assignment of claudin-1 (CLDN1) to human chromosome 3q28-->q29 with somatic cell hybrids". Cytogenet. Cell Genet. 88 (3–4): 217. doi:10.1159/000015553. PMID   10828592. S2CID   8896678.
  6. Morita K, Furuse M, Fujimoto K, Tsukita S (Mar 1999). "Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands". Proc. Natl. Acad. Sci. U.S.A. 96 (2): 511–6. Bibcode:1999PNAS...96..511M. doi: 10.1073/pnas.96.2.511 . PMC   15167 . PMID   9892664.
  7. "Entrez Gene: CLDN1 claudin 1".
  8. 1 2 Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG (Nov 2003). "Role of claudin interactions in airway tight junctional permeability". Am. J. Physiol. Lung Cell Mol. Physiol. 285 (5): L1166-78. doi:10.1152/ajplung.00182.2003. PMID   12909588.

Further reading