CNN3 | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | CNN3 , calponin 3 | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 602374; MGI: 1919244; HomoloGene: 37533; GeneCards: CNN3; OMA:CNN3 - orthologs | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Calponin 3. acidic is a protein that in humans is encoded by the CNN3 gene.
The CNN3 gene is located at 1p22-p21 [5] in the human chromosomal genome. CNN3 gene contains 7 exons and encodes calponin 3, a 36.4-kDa protein consisting of 329 amino acids with isoelectric point (pI) of 5.84. Calponin 3 is known as acidic calponin. Among three isoforms of calponin, less is known for the gene regulation and function of calponin 3. Nonetheless, much has been learned from extensive studies on the homologous genes CNN1 and CNN2 that encode calponin 1 and calponin 2. [6]
CNN3 is one of the three homologous calponin isoform genes. Calponin 3 is significantly diverged from calponin 1 and calponin 2 in the C terminal variable region. The higher degree of divergence among vertebrate CNN3 genes than that in the CNN1 and CNN2 gene families suggests possibly earlier emergence of CNN3, indicating that calponin 3 may represent a prototype of calponin ancestral of the three present-day isoforms (Fig. 1).
The primary structure of calponin 3 is similar as that of calponin 1 and calponin 2, consisting of a conserved N-terminal calponin homology (CH) domain, a conserved middle region containing two actin-binding sites, and a C-terminal variable region. The unique length amino acid sequence of the C-terminal segment of the three calponin isoforms are responsible for their size and overall charge differences.
Calponin 3 has been shown to participate in actin cytoskeleton-based activities such as that in embryonic development [7] and myogenesis. [8] Unlike calponin 1, calponin 3 has little effect on actomyosin Mg2+-ATPase activity and does not cause actin filaments bundling at the same condition as calponin 1 does. [9]
Calponin 3 is found in the brain with expression in neurons, [10] [11] astrocytes, [12] and glial cells, [13] where it may function in regulating the actin cytoskeleton with a proposed role in the plasticity of neural tissues. [14] [15] Calponin 3 is also present in embryonic trophoblasts and myoblasts with functions in cell fusion during embryonic development and myogenesis [7] [8] Calponin 3 is also expressed in B lymphocytes. [16]
Calponin 3 was found in stress fibers of skin fibroblasts and myofibroblasts during wound healing. Cnn3 knockdown in primary fibroblasts impaired stress fiber formation, resulting in decreased cell motility and contractile ability. [8] > Calponin 3 in the brain has a potential function in regulating actin filaments during neuronal remodeling. [17] Calponin 3 was also found in dendritic spines of adult hippocampal neurons to regulate dendritic spine plasticity. [15] While mice with systemic knockout of Cnn1 [18] or Cnn2, [19] or both Cnn1 and Cnn2 survive to adulthood and fertile, systemic knockout of calponin 3 in mice results in embryonic and neonatal lethality due to defect in the development of central nervous system. [16] CNN3 was found in the trophoblasts of human placenta and plays a role of negative regulator of trophoblast fusion. Knockdown or dissociation of calponin 3 from cytoskeleton in response to PKC phosphorylation promoted fusion of trophoblasts. [7]
Consistently, calponin 3 was also present in myoblasts as an inhibitory regulator of cell fusion. Overexpression of calponin 3 in mouse C2C12 myoblasts inhibited cell fusion during in vitro differentiation, whereas Cnn3 gene knockdown promoted cell fusion and the expression of skeletal muscle myosin. The inhibitory effect of calponin 3 was reversed upon phosphorylation by Rho-associated kinase 1/2 (ROCK1/2). [7]
The 2016 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: Rong Liu; J-P Jin (9 March 2016). "Calponin isoforms CNN1, CNN2 and CNN3: Regulators for actin cytoskeleton functions in smooth muscle and non-muscle cells". Gene . Gene Wiki Review Series. 585 (1): 143–153. doi:10.1016/J.GENE.2016.02.040. ISSN 0378-1119. PMC 5325697 . PMID 26970176. Wikidata Q37666020. |
Fimbrin also known as is plastin 1 is a protein that in humans is encoded by the PLS1 gene. Fimbrin is an actin cross-linking protein important in the formation of filopodia.
Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discovery site, CD56 expression is also found in, among others, the hematopoietic system. Here, the expression of CD56 is mostly associated with, but not limited to, natural killer cells. CD56 has been detected on other lymphoid cells, including gamma delta (γδ) Τ cells and activated CD8+ T cells, as well as on dendritic cells. NCAM has been implicated as having a role in cell–cell adhesion, neurite outgrowth, synaptic plasticity, and learning and memory.
Tropomyosin is a two-stranded alpha-helical, coiled coil protein found in many animal and fungal cells. In animals, it is an important component of the muscular system which works in conjunction with troponin to regulate muscle contraction. It is present in smooth and striated muscle tissues, which can be found in various organs and body systems, including the heart, blood vessels, respiratory system, and digestive system. In fungi, tropomyosin is found in cell walls and helps maintain the structural integrity of cells.
In mammalian cells, vinculin is a membrane-cytoskeletal protein in focal adhesion plaques that is involved in linkage of integrin adhesion molecules to the actin cytoskeleton. Vinculin is a cytoskeletal protein associated with cell-cell and cell-matrix junctions, where it is thought to function as one of several interacting proteins involved in anchoring F-actin to the membrane.
A calpain is a protein belonging to the family of calcium-dependent, non-lysosomal cysteine proteases expressed ubiquitously in mammals and many other organisms. Calpains constitute the C2 family of protease clan CA in the MEROPS database. The calpain proteolytic system includes the calpain proteases, the small regulatory subunit CAPNS1, also known as CAPN4, and the endogenous calpain-specific inhibitor, calpastatin.
Tropomodulin (TMOD) is a protein which binds and caps the minus end of actin, regulating the length of actin filaments in muscle and non-muscle cells.
Actin, alpha skeletal muscle is a protein that in humans is encoded by the ACTA1 gene.
ROCK1 is a protein serine/threonine kinase also known as rho-associated, coiled-coil-containing protein kinase 1. Other common names are ROKβ and P160ROCK. ROCK1 is a major downstream effector of the small GTPase RhoA and is a regulator of the actomyosin cytoskeleton which promotes contractile force generation. ROCK1 plays a role in cancer and in particular cell motility, metastasis, and angiogenesis.
Actin beta is one of six different actin isoforms which have been identified in humans. This is one of the two nonmuscle cytoskeletal actins. Actins are highly conserved proteins that are involved in cell motility, structure and integrity. Alpha actins are a major constituent of the contractile apparatus.
Tropomyosin alpha-3 chain is a protein that in humans is encoded by the TPM3 gene.
Alpha-actinin-2 is a protein which in humans is encoded by the ACTN2 gene. This gene encodes an alpha-actinin isoform that is expressed in both skeletal and cardiac muscles and functions to anchor myofibrillar actin thin filaments and titin to Z-discs.
Spectrin beta chain, brain 1 is a protein that in humans is encoded by the SPTBN1 gene.
Drebrin is a protein that in humans is encoded by the DBN1 gene.
Chloride intracellular channel 4, also known as CLIC4,p644H1,HuH1, is a eukaryotic gene.
Inositol-trisphosphate 3-kinase A is an enzyme that in humans is encoded by the ITPKA gene.
Rho-associated protein kinase (ROCK) is a kinase belonging to the AGC family of serine-threonine specific protein kinases. It is involved mainly in regulating the shape and movement of cells by acting on the cytoskeleton.
Calponin homology domain (or CH domain) is a family of actin binding domains found in both cytoskeletal proteins and signal transduction proteins. The domain is about 100 amino acids in length and is composed of four alpha helices. It comprises the following groups of actin-binding domains:
Talin-2 is a protein in humans that is encoded by the TLN2 gene. It belongs to the talin protein family. This gene encodes a protein related to talin-1, a cytoskeletal protein that plays a significant role in the assembly of actin filaments. Talin-2 is expressed at high levels in cardiac muscle and functions to provide linkages between the extracellular matrix and actin cytoskeleton at costamere structures to transduce force laterally.
Calponin 2 is a protein that in humans is encoded by the CNN2 gene.
Calponin 1 is a basic smooth muscle protein that in humans is encoded by the CNN1 gene.