Carbonyl iron

Last updated

Carbonyl iron is a highly pure (97.5% for grade S, 99.5+% for grade R) iron, prepared by chemical decomposition of purified iron pentacarbonyl. It usually has the appearance of grey powder, composed of spherical microparticles. Most of the impurities are carbon, oxygen, and nitrogen.

BASF invented carbonyl iron powder in 1925 [1] and claims to be the world's leading producer. [1] In 1934, BASF was also involved in the development of the very first magnetic tapes used by the AEG Magnetophon tape recorder. [2] Carbonyl iron became the first magnetic recording oxide (although quickly replaced in 1936 by iron oxide).

In electronics, carbonyl iron is used to manufacture magnetic cores for high-frequency coils and in production of some ferrites. Spherical particles manufactured of carbonyl iron are used as a component of the radar absorbing materials used by the military, in stealth vehicles, for example. [3] Other uses are in powder metallurgy, metal injection molding, and in various specialty products.

Carbonyl iron powder was used in Germany during World War II in the manufacture of radio frequency equipment, including radio transmitters and receivers, low hysteresis induction coils, filter and choke coils: higher grades were found to be especially suitable for carrier wave frequencies over 100 MHz. It was also found to have anti-knock properties similar to lead tetraethyl. [4]

Powdered cores made of carbonyl iron have high stability of parameters across a wide range of temperatures and magnetic flux levels, with excellent Q factors between 50 kHz and 200 MHz. A popular application is in broadband inductors, especially in high-power applications.

In pharmaceutics, carbonyl iron powder is used to treat iron deficiency and as an iron dietary supplement. In 2017 carbonyl iron powder was reported as an effective reductant for aromatic nitro groups in water, an important reaction used in the synthesis of pharmaceuticals. [5]

Due to its high permeability and low core losses, Carbonyl iron powder cores are utilized in high-frequency switching circuit output chokes and resonant inductors. [6] It can efficiently handle alternating current (AC) signals at high frequencies, improving performance in power supplies, RF applications, and telecommunications. [7] Their fine particle size also helps reduce eddy current losses, enhancing overall efficiency. [8]

Particles of carbonyl iron (20–40%) suspended in a carrier fluid (60–80%) are used as a magnetorheological fluid.

See also

Related Research Articles

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Nickel</span> Chemical element with atomic number 28 (Ni)

Nickel is a chemical element; it has symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel is a hard and ductile transition metal. Pure nickel is chemically reactive, but large pieces are slow to react with air under standard conditions because a passivation layer of nickel oxide forms on the surface that prevents further corrosion. Even so, pure native nickel is found in Earth's crust only in tiny amounts, usually in ultramafic rocks, and in the interiors of larger nickel–iron meteorites that were not exposed to oxygen when outside Earth's atmosphere.

<span class="mw-page-title-main">Balun</span> Electrical device

A balun is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

<span class="mw-page-title-main">Ferrofluid</span> Special type of liquid which is attracted by poles of a magnet

Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid. Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets.

<span class="mw-page-title-main">Induction heating</span> Process of heating an electrically conducting object by electromagnetic induction

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Magnetic particle inspection</span> Non-destructive method used to detect defects in ferrous materials

Magnetic particle inspection (MPI) is a nondestructive testing process where a magnetic field is used for detecting surface, and shallow subsurface, discontinuities in ferromagnetic materials. Examples of ferromagnetic materials include iron, nickel, cobalt, and some of their alloys. The process puts a magnetic field into the part. The piece can be magnetized by direct or indirect magnetization. Direct magnetization occurs when the electric current is passed through the test object and a magnetic field is formed in the material. Indirect magnetization occurs when no electric current is passed through the test object, but a magnetic field is applied from an outside source. The magnetic lines of force are perpendicular to the direction of the electric current, which may be either alternating current (AC) or some form of direct current (DC).

<span class="mw-page-title-main">Magnetic core</span> Object used to guide and confine magnetic fields

A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, inductors, loudspeakers, magnetic recording heads, and magnetic assemblies. It is made of ferromagnetic metal such as iron, or ferrimagnetic compounds such as ferrites. The high permeability, relative to the surrounding air, causes the magnetic field lines to be concentrated in the core material. The magnetic field is often created by a current-carrying coil of wire around the core.

Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique that directly detects superparamagnetic nanoparticle tracers. The technology has potential applications in diagnostic imaging and material science. Currently, it is used in medical research to measure the 3-D location and concentration of nanoparticles. Imaging does not use ionizing radiation and can produce a signal at any depth within the body. MPI was first conceived in 2001 by scientists working at the Royal Philips Research lab in Hamburg. The first system was established and reported in 2005. Since then, the technology has been advanced by academic researchers at several universities around the world. The first commercial MPI scanners have recently become available from Magnetic Insight and Bruker Biospin.

<span class="mw-page-title-main">Ferrite (magnet)</span> Ferrimagnetic ceramic material composed of iron(III) oxide and a divalent metallic element

A ferrite is one of a family of iron oxide-containing magnetic ceramic materials. They are ferrimagnetic, meaning they are attracted by magnetic fields and can be magnetized to become permanent magnets. Unlike many ferromagnetic materials, most ferrites are not electrically conductive, making them useful in applications like magnetic cores for transformers to suppress eddy currents.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<span class="mw-page-title-main">Choke (electronics)</span> Inductor used as a low-pass filter

In electronics, a choke is an inductor used to block higher-frequency alternating currents (AC) while passing direct current (DC) and lower-frequency ACs in a circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core, although some consist of a doughnut-shaped ferrite bead strung on a wire. The choke's impedance increases with frequency. Its low electrical resistance passes both AC and DC with little power loss, but its reactance limits the amount of AC passed.

<span class="mw-page-title-main">Radiation-absorbent material</span> Substances which absorb radio frequency energy

In materials science, radiation-absorbent material (RAM) is a material which has been specially designed and shaped to absorb incident RF radiation, as effectively as possible, from as many incident directions as possible. The more effective the RAM, the lower the resulting level of reflected RF radiation. Many measurements in electromagnetic compatibility (EMC) and antenna radiation patterns require that spurious signals arising from the test setup, including reflections, are negligible to avoid the risk of causing measurement errors and ambiguities.

<span class="mw-page-title-main">Chromium(IV) oxide</span> Chemical compound

Chromium dioxide or chromium(IV) oxide is an inorganic compound with the formula CrO2. It is a black synthetic magnetic solid. It once was widely used in magnetic tape emulsion. With the increase in popularity of CDs and DVDs and more recently digital media, the use of chromium(IV) oxide has declined. However, it is still used in data tape applications for enterprise-class storage systems. It is still considered by many oxide and tape manufacturers to have been one of the best magnetic recording particulates ever invented.

In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity. Moreover, because of its comparatively low losses at high frequencies, ferrite is extensively used for the cores of RF transformers and inductors in applications such as switched-mode power supplies and ferrite loopstick antennas for AM radio receivers.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

Various types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

Magnetic nanoparticles (MNPs) are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly consist of two components, a magnetic material, often iron, nickel and cobalt, and a chemical component that has functionality. While nanoparticles are smaller than 1 micrometer in diameter, the larger microbeads are 0.5–500 micrometer in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known as magnetic nanobeads with a diameter of 50–200 nanometers. Magnetic nanoparticle clusters are a basis for their further magnetic assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine and tissue specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic cooling and cation sensors.

Induction plasma, also called inductively coupled plasma, is a type of high temperature plasma generated by electromagnetic induction, usually coupled with argon gas. The magnetic field induces an electric current within the gas which creates the plasma. The plasma can reach temperatures up to 10,000 Kelvin. Inductive plasma technology is used in fields such as powder spheroidization and nano-material synthesis. The technology is applied via an Induction plasma torch, which consists of three basic elements: the induction coil, a confinement chamber, and a torch head, or gas distributor. The main benefit of this technology is the elimination of electrodes, which can deteriorate and introduce contamination.

<span class="mw-page-title-main">Iron oxide nanoparticle</span>

Iron oxide nanoparticles are iron oxide particles with diameters between about 1 and 100 nanometers. The two main forms are composed of magnetite and its oxidized form maghemite. They have attracted extensive interest due to their superparamagnetic properties and their potential applications in many fields including molecular imaging.

A molypermalloy powder (MPP) core is a toroidal magnetic core comprised from the powder of multiple alloys. It is distributed with air gaps to help condense its magnetic field to minimize core losses. Its composition is made from approximately 79% nickel, 17% iron, and 4% molybdenum.

<span class="mw-page-title-main">Compact Cassette tape types and formulations</span>

Audio compact cassettes use magnetic tape of three major types which differ in fundamental magnetic properties, the level of bias applied during recording, and the optimal time constant of replay equalization. Specifications of each type were set in 1979 by the International Electrotechnical Commission (IEC): Type I, Type II, Type III, and Type IV. 'Type 0' was a non-standard designation for early compact cassettes that did not conform to IEC specification.

References

  1. 1 2 "Carbonyl Iron Powder" (PDF). BASF. 2024. Archived (PDF) from the original on 2024-03-29. Retrieved 1 August 2024.
  2. "1934 / Magnetophonband". BASF (in German). Retrieved 1 August 2024.
  3. "Carbonyl Iron Powder (CIP)". BASF. Archived from the original on 1 August 2024. Retrieved 1 August 2024.
  4. Interrogation of Dr. Leo Schlecht: Carbonyl Nickel and Carbonyl Iron Powders, their Production and Properties. BIOS Final Report 1575. HM Stationery Office. n.d. [1947]. pp. 28–29.
  5. Lee, Nicholas R.; Bikovtseva, Agata A.; Cortes-Clerget, Margery; Gallou, Fabrice; Lipshutz, Bruce H. (2017-12-05). "Carbonyl Iron Powder: A Reagent for Nitro Group Reductions under Aqueous Micellar Catalysis Conditions". Organic Letters. 19 (24): 6518–6521. doi:10.1021/acs.orglett.7b03216. ISSN   1523-7060. PMID   29206473.
  6. "Soft Magnetic Powder Explained: From Basics to Advanced Applications". Stanford Advanced Materials. Retrieved Sep 23, 2024.
  7. Li, Xiagguo; Yan, Haitian (2024). "Synthesis of double-shell carbonyl iron powder @SiO2 @C for enhanced electromagnetic wave absorption". Journal of alloys and Compounds. 976: 173233. doi:10.1016/j.jallcom.2023.173233.
  8. Wang, Jinghui; Guo, Zhili (2020). "Magnetic properties regulation and loss contribution analysis for Fe-based amorphous powder cores doped with micron-sized FeSi powders". Journal of Magnetism and Magnetic Materials. 510: 166931. doi:10.1016/j.jmmm.2020.166931.