Carleman linearization

Last updated

In mathematics, Carleman linearization (or Carleman embedding) is a technique to transform a finite-dimensional nonlinear dynamical system into an infinite-dimensional linear system. It was introduced by the Swedish mathematician Torsten Carleman in 1932. [1] Carleman linearization is related to composition operator and has been widely used in the study of dynamical systems. It also been used in many applied fields, such as in control theory [2] [3] and in quantum computing. [4] [5]

Contents

Procedure

Consider the following autonomous nonlinear system:

where denotes the system state vector. Also, and 's are known analytic vector functions, and is the element of an unknown disturbance to the system.

At the desired nominal point, the nonlinear functions in the above system can be approximated by Taylor expansion

where is the partial derivative of with respect to at and denotes the Kronecker product.

Without loss of generality, we assume that is at the origin.

Applying Taylor approximation to the system, we obtain

where and .

Consequently, the following linear system for higher orders of the original states are obtained:

where , and similarly .

Employing Kronecker product operator, the approximated system is presented in the following form

where , and and matrices are defined in (Hashemian and Armaou 2015). [6]

See also

Related Research Articles

<span class="mw-page-title-main">Wave equation</span> Differential equation important in physics

The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Hamiltonian mechanics</span> Formulation of classical mechanics using momenta

In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In the calculus of variations and classical mechanics, the Euler–Lagrange equations are a system of second-order ordinary differential equations whose solutions are stationary points of the given action functional. The equations were discovered in the 1750s by Swiss mathematician Leonhard Euler and Italian mathematician Joseph-Louis Lagrange.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In classical mechanics, the Laplace–Runge–Lenz (LRL) vector is a vector used chiefly to describe the shape and orientation of the orbit of one astronomical body around another, such as a binary star or a planet revolving around a star. For two bodies interacting by Newtonian gravity, the LRL vector is a constant of motion, meaning that it is the same no matter where it is calculated on the orbit; equivalently, the LRL vector is said to be conserved. More generally, the LRL vector is conserved in all problems in which two bodies interact by a central force that varies as the inverse square of the distance between them; such problems are called Kepler problems.

The quantum Heisenberg model, developed by Werner Heisenberg, is a statistical mechanical model used in the study of critical points and phase transitions of magnetic systems, in which the spins of the magnetic systems are treated quantum mechanically. It is related to the prototypical Ising model, where at each site of a lattice, a spin represents a microscopic magnetic dipole to which the magnetic moment is either up or down. Except the coupling between magnetic dipole moments, there is also a multipolar version of Heisenberg model called the multipolar exchange interaction.

<span class="mw-page-title-main">Shallow water equations</span> Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and dispersive effects in the medium. There are two main kinds of solitons:

<span class="mw-page-title-main">Peridynamics</span>

Peridynamics is a non-local formulation of continuum mechanics that is oriented toward deformations with discontinuities, especially fractures. Originally, bond-based peridynamic has been introduced, wherein, internal interaction forces between a material point and all the other ones with which it can interact, are modeled as a central forces field. This type of force fields can be imagined as a mesh of bonds connecting each point of the body with every other interacting point within a certain distance which depends on material property, called peridynamic horizon. Later, to overcome bond-based framework limitations for the material Poisson’s ratio, state-base peridynamics, has been formulated. Its characteristic feature is that the force exchanged between a point and another one is influenced by the deformation state of all other bonds relative to its interaction zone.

<span class="mw-page-title-main">Mild-slope equation</span> Physics phenomenon and formula

In fluid dynamics, the mild-slope equation describes the combined effects of diffraction and refraction for water waves propagating over bathymetry and due to lateral boundaries—like breakwaters and coastlines. It is an approximate model, deriving its name from being originally developed for wave propagation over mild slopes of the sea floor. The mild-slope equation is often used in coastal engineering to compute the wave-field changes near harbours and coasts.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

Riemann invariants are mathematical transformations made on a system of conservation equations to make them more easily solvable. Riemann invariants are constant along the characteristic curves of the partial differential equations where they obtain the name invariant. They were first obtained by Bernhard Riemann in his work on plane waves in gas dynamics.

In mathematical physics, the Whitham equation is a non-local model for non-linear dispersive waves.

Mean-field particle methods are a broad class of interacting type Monte Carlo algorithms for simulating from a sequence of probability distributions satisfying a nonlinear evolution equation. These flows of probability measures can always be interpreted as the distributions of the random states of a Markov process whose transition probabilities depends on the distributions of the current random states. A natural way to simulate these sophisticated nonlinear Markov processes is to sample a large number of copies of the process, replacing in the evolution equation the unknown distributions of the random states by the sampled empirical measures. In contrast with traditional Monte Carlo and Markov chain Monte Carlo methods these mean-field particle techniques rely on sequential interacting samples. The terminology mean-field reflects the fact that each of the samples interacts with the empirical measures of the process. When the size of the system tends to infinity, these random empirical measures converge to the deterministic distribution of the random states of the nonlinear Markov chain, so that the statistical interaction between particles vanishes. In other words, starting with a chaotic configuration based on independent copies of initial state of the nonlinear Markov chain model, the chaos propagates at any time horizon as the size the system tends to infinity; that is, finite blocks of particles reduces to independent copies of the nonlinear Markov process. This result is called the propagation of chaos property. The terminology "propagation of chaos" originated with the work of Mark Kac in 1976 on a colliding mean-field kinetic gas model.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

Nonlinear tides are generated by hydrodynamic distortions of tides. A tidal wave is said to be nonlinear when its shape deviates from a pure sinusoidal wave. In mathematical terms, the wave owes its nonlinearity due to the nonlinear advection and frictional terms in the governing equations. These become more important in shallow-water regions such as in estuaries. Nonlinear tides are studied in the fields of coastal morphodynamics, coastal engineering and physical oceanography. The nonlinearity of tides has important implications for the transport of sediment.

References

  1. Carleman, Torsten (1932). "Application de la théorie des équations intégrales linéaires aux systèmes d'équations différentielles non linéaires". Acta Mathematica. 59: 63–87. doi: 10.1007/BF02546499 . ISSN   0001-5962. S2CID   120263424.
  2. Salazar-Caceres, Fabian; Tellez-Castro, Duvan; Mojica-Nava, Eduardo (2017). "Consensus for multi-agent nonlinear systems: A Carleman approximation approach". 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC). Cartagena: IEEE. pp. 1–5. doi:10.1109/CCAC.2017.8276388. ISBN   978-1-5386-0398-7. S2CID   44019245.
  3. Amini, Arash; Sun, Qiyu; Motee, Nader (2020). "Approximate Optimal Control Design for a Class of Nonlinear Systems by Lifting Hamilton-Jacobi-Bellman Equation". 2020 American Control Conference (ACC). Denver, CO, USA: IEEE. pp. 2717–2722. doi:10.23919/ACC45564.2020.9147576. ISBN   978-1-5386-8266-1. S2CID   220889153.
  4. Liu, Jin-Peng; Kolden, Herman Øie; Krovi, Hari K.; Loureiro, Nuno F.; Trivisa, Konstantina; Childs, Andrew M. (2021-08-31). "Efficient quantum algorithm for dissipative nonlinear differential equations". Proceedings of the National Academy of Sciences. 118 (35): e2026805118. arXiv: 2011.03185 . Bibcode:2021PNAS..11826805L. doi: 10.1073/pnas.2026805118 . ISSN   0027-8424. PMC   8536387 . PMID   34446548.
  5. Levy, Max G. (January 5, 2021). "New Quantum Algorithms Finally Crack Nonlinear Equations". Quanta Magazine. Retrieved December 31, 2022.
  6. Hashemian, N.; Armaou, A. (2015). "Fast Moving Horizon Estimation of nonlinear processes via Carleman linearization". 2015 American Control Conference (ACC). pp. 3379–3385. doi:10.1109/ACC.2015.7171854. ISBN   978-1-4799-8684-2. S2CID   13251259.