Carrier-envelope phase

Last updated

The carrier-envelope phase (CEP) or carrier-envelope offset (CEO) phase is an important feature of an ultrashort laser pulse and gains significance with decreasing pulse duration, in a regime where the pulse consists of a few wavelengths. Physical effects depending on the carrier-envelope phase fall into the category of highly nonlinear optics.

Contents

CEP in the time domain

CEP in the time domain: A pulse train of five consecutive pulses with linearly varying CEP is depicted. Depending on its value the relative delay between the carrier (black) and the envelope (blue dashed) is different. PulseTrain-CEOPhase.svg
CEP in the time domain: A pulse train of five consecutive pulses with linearly varying CEP is depicted. Depending on its value the relative delay between the carrier (black) and the envelope (blue dashed) is different.

The CEP is the phase between the carrier wave and the position of the intensity envelope of the pulse (cf. figure in the time domain). In a train of multiple pulses it is usually varying due to the difference between phase and group velocity. The time, after which the phase increases resp. decreases by is called . Ideally, it is an integer multiple of the duration between two pulses and the pulses are picked at the corresponding rate to obtain a constant phase over all picked pulses. Besides this linear evolution, fluctuations which are common in conventional femtosecond laser systems usually cause a nonlinear shot-to-shot fluctuation of the CEP. This is why measuring and controlling it is very important for many applications.

CEP in the frequency domain and measurement

CEP in the frequency domain: The frequency spectrum of the above pulse train is a frequency comb which shows an offset if it is continued until a frequency of zero. This offset is the carrier-envelope frequency
f
C
E
O
{\displaystyle f_{\mathrm {CEO} }}
, and
f
r
e
p
=
1
/
T
r
e
p
{\displaystyle f_{\mathrm {rep} }=1/T_{\mathrm {rep} }}
is the repetition rate FrequencyComb-CEOphase.svg
CEP in the frequency domain: The frequency spectrum of the above pulse train is a frequency comb which shows an offset if it is continued until a frequency of zero. This offset is the carrier-envelope frequency , and is the repetition rate

In the frequency domain, a pulse train is represented by a frequency comb. Here, the carrier-envelope frequency is exactly the offset frequency of the pulse train, cf. figure. This makes it possible to perform a multi-shot measurement of the CEP, for example by using an f-2f interferometer. Here, the pulses to be measured are broadened to a bandwidth of at least one octave. A long-wavelength part of the pulse is frequency doubled and the beat note between it and the short-wavelength part of the fundamental pulse is measured. This is better known as the offset phase.

With a phase-locked loop, a property of the laser oscillator such as the optical path length can be adjusted correspondingly to the obtained offset frequency and thus the phase can be stabilized.

Bibliography

Related Research Articles

Phase velocity rate at which the phase of the wave propagates in space

The phase velocity of a wave is the rate at which the wave propagates in some medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave will appear to travel at the phase velocity. The phase velocity is given in terms of the wavelength λ (lambda) and time period T as

Wave Repeated oscillation about a stable equilibrium

In physics, mathematics, and related fields, a wave is a propagating dynamic disturbance of one or more quantities, sometimes as described by a wave equation. In physical waves, at least two field quantities in the wave medium are involved. Waves can be periodic, in which case those quantities oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction it is said to be a traveling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

In physics, optical depth or optical thickness is the natural logarithm of the ratio of incident to transmitted radiant power through a material, and spectral optical depth or spectral optical thickness is the natural logarithm of the ratio of incident to transmitted spectral radiant power through a material. Optical depth is dimensionless, and in particular is not a length, though it is a monotonically increasing function of optical path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for optical depth is discouraged.

In signal processing, group delay is the time delay of the amplitude envelopes of the various sinusoidal components of a signal through a device under test, and is a function of frequency for each component. Phase delay, in contrast, is the time delay of the phase as opposed to the time delay of the amplitude envelope.

Dispersion (optics) Dependence of phase velocity on frequency

In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. Media having this common property may be termed dispersive media. Sometimes the term chromatic dispersion is used for specificity. Although the term is used in the field of optics to describe light and other electromagnetic waves, dispersion in the same sense can apply to any sort of wave motion such as acoustic dispersion in the case of sound and seismic waves, in gravity waves, and for telecommunication signals along transmission lines or optical fiber.

In optics, absorbance or decadic absorbance is the common logarithm of the ratio of incident to transmitted radiant power through a material, and spectral absorbance or spectral decadic absorbance is the common logarithm of the ratio of incident to transmitted spectral radiant power through a material. Absorbance is dimensionless, and in particular is not a length, though it is a monotonically increasing function of path length, and approaches zero as the path length approaches zero. The use of the term "optical density" for absorbance is discouraged. In physics, a closely related quantity called "optical depth" is used instead of absorbance: the natural logarithm of the ratio of incident to transmitted radiant power through a material. The optical depth equals the absorbance times ln(10).

In optics, an ultrashort pulse of light is an electromagnetic pulse whose time duration is of the order of a picosecond or less. Such pulses have a broadband optical spectrum, and can be created by mode-locked oscillators. They are commonly referred to as ultrafast events. Amplification of ultrashort pulses almost always requires the technique of chirped pulse amplification, in order to avoid damage to the gain medium of the amplifier.

Gires–Tournois etalon

In optics, a Gires–Tournois etalon is a transparent plate with two reflecting surfaces, one of which has very high reflectivity, ideally unity. Due to multiple-beam interference, light incident on a Gires–Tournois etalon is (almost) completely reflected, but has an effective phase shift that depends strongly on the wavelength of the light.

Chirped pulse amplification technique for amplifying an ultrashort laser pulse

Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.

Self-phase modulation (SPM) is a nonlinear optical effect of light-matter interaction. An ultrashort pulse of light, when travelling in a medium, will induce a varying refractive index of the medium due to the optical Kerr effect. This variation in refractive index will produce a phase shift in the pulse, leading to a change of the pulse's frequency spectrum.

In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted or received, per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency or of wavelength. The SI unit of radiant flux is the watt (W), that is the joule per second in SI base units, while that of spectral flux in frequency is the watt per hertz and that of spectral flux in wavelength is the watt per metre —commonly the watt per nanometre.

Here, is a list of initialisms and acronyms used in laser physics, applications and technology.

Frequency comb laser source emitting in equally spaced frequency lines

In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to the latter mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.

Second-harmonic generation nonlinear optical process

Second-harmonic generation is a nonlinear optical process in which two photons with the same frequency interact with a nonlinear material, are "combined", and generate a new photon with twice the energy of the initial photons, that conserves the coherence of the excitation. It is a special case of sum-frequency generation, and more generally of harmonic generation.

Multiphoton intrapulse interference phase scan (MIIPS) is a method used in ultrashort laser technology that simultaneously measures, and compensates femtosecond laser pulses using an adaptive pulse shaper. When an ultrashort laser pulse reaches a duration of less than a few hundred femtosecond, it becomes critical to characterize its duration, its temporal intensity curve, or its electric field as a function of time. Classical photodetectors measuring the intensity of light are still too slow to allow for a direct measurement, even with the fastest photodiodes or streak cameras.

Supercontinuum formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and linear effects in the medium. There are two main kinds of solitons:

Spinodal decomposition

Spinodal decomposition is one thermodynamic phase decomposing into two phases, when there is no nucleation barrier to this decomposition. Thus at least some fluctuations in the system spontaneously grow as they reduce the free energy, and so there is no waiting, as there typically is when there is a nucleation barrier. Spinodal decomposition can occur, for example, when mixtures of polymers are unstable as a mixture and separate into two coexisting phases, each one rich in one polymer, and poor in the other. It can also occur in metal alloys.

The Pound–Drever–Hall (PDH) technique is a widely used and powerful approach for stabilizing the frequency of light emitted by a laser by means of locking to a stable cavity. The PDH technique has a broad range of applications including interferometric gravitational wave detectors, atomic physics, and time measurement standards, many of which also use related techniques such as frequency modulation spectroscopy. Named after R. V. Pound, Ronald Drever, and John L. Hall, the PDH technique was described in 1983 by Drever, Hall and others working at the University of Glasgow and the U. S. National Bureau of Standards. This optical technique has many similarities to an older frequency-modulation technique developed by Pound for microwave cavities.

A quantum limit in physics is a limit on measurement accuracy at quantum scales. Depending on the context, the limit may be absolute, or it may only apply when the experiment is conducted with naturally occurring quantum states and can be circumvented with advanced state preparation and measurement schemes.