Catalog of MCA Control Patterns

Last updated

Jannie Hofmeyr published the first catalog of control patterns in metabolic control analysis (MCA). His doctoral research. [1] concerned the use of graphical patterns to elucidate chains of interaction in metabolic regulation, later published in the European Journal of Biochemistry. [2] In his thesis, he cataloged 25 patterns for various biochemical networks. In later work, his research group, together with Carl D Christensen and Johann Rohwer, developed a Python based tool called SymCA that was part of the PySCeSToolbox toolkit [3] [4] that could generate patterns automatically and symbolically from a description of the network. This software was used to generate the patterns shown below.

Contents

The control equations, especially the numerators of the equations, can give information on the relative importance and routes by which perturbations travel through a biochemical network [5]

Notation

Control patterns describe how a perturbation to a given parameter affects the steady-state level of a given variable. For example, a concentration control coefficient can describe how the overexpression of a specific enzyme can influence steady-state metabolite concentrations. Flux control coefficients are similar in that they describe how a perturbation in a given enzyme affects steady-state flux through a pathway. Such coefficients can be written in terms of elasticity coefficients.

Elasticity coefficients are local properties that describe how a single reaction is influenced by changes in the substrates and products that might influence the rate. For example, given a reaction such as:

we will assume it has a rate of reaction of . This reaction rate can be influenced by changes in the concentrations of substrate or product . This influence is measured by an elasticity which is defined as:

To make the notation manageable, a specific numbering scheme is used in the following patterns. If a substrate has an index of , then the reaction index will be . The product elasticity will also have an index of . This means that a product elasticity will have identical subscripts and superscripts making them easy to identify. The source boundary species is always labeled zero as well as the label for the first reaction.

For example, the following fragment of a network illustrates this labeling:

then

Linear Chains

Two-Step Pathway

Assuming both steps are Irreversible

Assuming both steps are Reversible

Three-Step Pathway

Assuming the three steps are Irreversible

Denominator:

Assume that each of the following expressions is divided by d

Assuming the three steps are Reversible

Denominator:

Assume that each of the following expressions is divided by

Four-Step Pathway

Denominator:

Assume that each of the following expressions is divided by .

Linear Chains with Negative Feedback

Three-Step Pathway

Negative Feedback Loop with three reaction steps.pdf

Denominator:

Assume that each of the following expressions is divided by .

Four-Step Pathway

NegFeedback FourSteps SNames.png

Denominator:

Assume that each of the following expressions is divided by .

Branched Pathways

Simple Branched Metabolic Pathway.png

At steady-state , therefore define the following two terms:

Denominator:

Assume that each of the following expressions is divided by .

See also

Related Research Articles

In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus. Cross section is typically denoted σ (sigma) and is expressed in units of area, more specifically in barns. In a way, it can be thought of as the size of the object that the excitation must hit in order for the process to occur, but more exactly, it is a parameter of a stochastic process.

<span class="mw-page-title-main">Noether's theorem</span> Statement relating differentiable symmetries to conserved quantities

Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems published by mathematician Emmy Noether in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

<span class="mw-page-title-main">Propagator</span> Function in quantum field theory showing probability amplitudes of moving particles

In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. In Feynman diagrams, which serve to calculate the rate of collisions in quantum field theory, virtual particles contribute their propagator to the rate of the scattering event described by the respective diagram. Propagators may also be viewed as the inverse of the wave operator appropriate to the particle, and are, therefore, often called (causal) Green's functions.

<span class="mw-page-title-main">Simple linear regression</span> Linear regression model with a single explanatory variable

In statistics, simple linear regression (SLR) is a linear regression model with a single explanatory variable. That is, it concerns two-dimensional sample points with one independent variable and one dependent variable and finds a linear function that, as accurately as possible, predicts the dependent variable values as a function of the independent variable. The adjective simple refers to the fact that the outcome variable is related to a single predictor.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

<span class="mw-page-title-main">Metabolic control analysis</span> Metabolic control

Metabolic control analysis (MCA) is a mathematical framework for describing metabolic, signaling, and genetic pathways. MCA quantifies how variables, such as fluxes and species concentrations, depend on network parameters. In particular, it is able to describe how network-dependent properties, called control coefficients, depend on local properties called elasticities or Elasticity Coefficients.

<span class="mw-page-title-main">Dual quaternion</span> Eight-dimensional algebra over the real numbers

In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of real numbers as coefficients. A dual quaternion can be represented in the form A + εB, where A and B are ordinary quaternions and ε is the dual unit, which satisfies ε2 = 0 and commutes with every element of the algebra. Unlike quaternions, the dual quaternions do not form a division algebra.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

<span class="mw-page-title-main">Fiber-reinforced composite</span>

A fiber-reinforced composite (FRC) is a composite building material that consists of three components:

  1. the fibers as the discontinuous or dispersed phase,
  2. the matrix as the continuous phase, and
  3. the fine interphase region, also known as the interface.

The purpose of this page is to provide supplementary materials for the ordinary least squares article, reducing the load of the main article with mathematics and improving its accessibility, while at the same time retaining the completeness of exposition.

<span class="mw-page-title-main">Plate theory</span> Mathematical model of the stresses within flat plates under loading

In continuum mechanics, plate theories are mathematical descriptions of the mechanics of flat plates that draw on the theory of beams. Plates are defined as plane structural elements with a small thickness compared to the planar dimensions. The typical thickness to width ratio of a plate structure is less than 0.1. A plate theory takes advantage of this disparity in length scale to reduce the full three-dimensional solid mechanics problem to a two-dimensional problem. The aim of plate theory is to calculate the deformation and stresses in a plate subjected to loads.

<span class="mw-page-title-main">Kirchhoff–Love plate theory</span> Theory used to determine the stresses and deformations in thin plates

The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments. This theory is an extension of Euler-Bernoulli beam theory and was developed in 1888 by Love using assumptions proposed by Kirchhoff. The theory assumes that a mid-surface plane can be used to represent a three-dimensional plate in two-dimensional form.

IQ imbalance is a performance-limiting issue in the design of a class of radio receivers known as direct conversion receivers. These translate the received radio frequency signal directly from the carrier frequency to baseband using a single mixing stage.

Control coefficients measure the response of a biochemical pathway to changes in enzyme activity. The response coefficient, as originally defined by Kacser and Burns, is a measure of how external factors such as inhibitors, pharmaceutical drugs, or boundary species affect the steady-state fluxes and species concentrations. The flux response coefficient is defined by:

The biochemical systems equation is a compact equation of nonlinear differential equations for describing a kinetic model for any network of coupled biochemical reactions and transport processes.

In metabolic control analysis, a variety of theorems have been discovered and discussed in the literature. The most well known of these are flux and concentration control coefficient summation relationships. These theorems are the result of the stoichiometric structure and mass conservation properties of biochemical networks. Equivalent theorems have not been found, for example, in electrical or economic systems.

The stoichiometric structure and mass-conservation properties of biochemical pathways gives rise to a series of theorems or relationships between the control coefficients and the control coefficients and elasticities. There are a large number of such relationships depending on the pathway configuration which have been documented and discovered by various authors. The term theorem has been used to describe these relationships because they can be proved in terms of more elementary concepts. The operational proofs in particular are of this nature.

References

  1. Hofmeyr, Jan-Hendrik (1986). Studies in steady-state modelling and control analysis of metabolic systems. University of Stellenbosch.{{cite book}}: CS1 maint: location missing publisher (link)
  2. Hofmeyr, J.-H. S. (1989). "Control-pattern analysis of metabolic pathways: Flux and concentration control in linear pathways". Eur. J. Biochem. 186 (1–2): 343–354. doi: 10.1111/j.1432-1033.1989.tb15215.x . PMID   2598934.
  3. Christensen, Carl D; Hofmeyr, Jan-Hendrik S; Rohwer, Johann M (1 January 2018). "PySCeSToolbox: a collection of metabolic pathway analysis tools". Bioinformatics. 34 (1): 124–125. doi:10.1093/bioinformatics/btx567. PMID   28968872.
  4. Rohwer, Johann; Akhurst, Timothy; Hofmeyr, Jannie (2008). "Symbolic Control Analysis of Cellular Systems". Beilstein-Institut. S2CID   9216034.
  5. Christensen, Carl D.; Hofmeyr, Jan-Hendrik S.; Rohwer, Johann M. (28 November 2018). "Delving deeper: Relating the behaviour of a metabolic system to the properties of its components using symbolic metabolic control analysis". PLOS ONE. 13 (11): e0207983. Bibcode:2018PLoSO..1307983C. doi: 10.1371/journal.pone.0207983 . PMC   6261606 . PMID   30485345.