Catastrophic antiphospholipid syndrome

Last updated
Catastrophic antiphospholipid syndrome
Other namesCatastrophic APS
Specialty Intensive care medicine, otorhinolaryngology, rheumatology   OOjs UI icon edit-ltr-progressive.svg

Catastrophic antiphospholipid syndrome (CAPS), also known as Asherson's syndrome, is a rare autoimmune disease in which widespread, intravascular clotting causes multi-organ failure. [1] The syndrome is caused by antiphospholipid antibodies that target a group of proteins in the body that are associated with phospholipids. These antibodies activate endothelial cells, platelets, and immune cells, ultimately causing a large inflammatory immune response and widespread clotting. [1] CAPS was first described by Ronald Asherson in 1992. The syndrome exhibits thrombotic microangiopathy, multiple organ thromboses, and in some cases tissue necrosis and is considered an extreme or catastrophic variant of the antiphospholipid syndrome.

Contents

Presentation

Clinically, the syndrome affects at least three organs and may affect many organ systems. The syndrome usually occurs with small vessel thromboses affecting organ systems such as the gastrointestinal tract and manifestations of the acute respiratory distress syndrome (ARDS), a type of systemic inflammatory response syndrome (SIRS). [2] Peripheral thrombosis may be encountered affecting veins and arteries. Intra-abdominal thrombosis may lead to pain. The body contains β2-GPI, a glycoprotein in the blood, which is considered a natural anticoagulant due to its inhibitory effects on certain aspects of platelet synthesis and function. Because the formation of anti-β2-GPI antibodies can occur after exposure to bacteria, the body favors a hypercoagulable state, which has been noted to activate toll-like receptor 4 resulting in what is known as a cytokine storm or a thrombotic storm. [3] A thrombotic storm may also occur due to the following precipitating events: alterations in coagulation and fibrinolysis, which induce high mortality rates, and infections amongst pediatric patients where IgM and IgG anti-β2-GPI antibodies induce an endothelial signal, leading to a procoagulant state. [4] It is also hypothesized that thrombotic storms occur due to prothrombotic genetic risk factors, which trigger a sped-up form of thrombosis after its first occurrence, rather than being caused solely by environmental factors. [5] Cardiovascular, nervous, kidney, and lung system complications are common. More specifically with the heart, Asherson's syndrome can lead to complications such as mitral valve regurgitation (MVR) in which the mitral valve does not shut properly allowing backflow of blood into the heart as well as angina (chest pain) and myocardial infarction (heart attack). [6] Furthermore, complications in the kidneys may occur, including low urine production and high blood pressure, while complications with the lungs can result in rapid breathing (hyperventilation) and low oxygen levels (hypoxemia). [7] The affected individual may exhibit skin purpura and necrosis. Cerebral manifestations may lead to encephalopathy and seizures. Myocardial infarctions may occur. Strokes may occur due to the arterial clotting involvement. Death may result from multiple organ failure.

Furthermore, the syndrome has been shown to manifest multi-organ failures and miscarriages in the context of pregnancies. 54% of pregnant mothers with the disease experienced fetal loss, and around 50% of pregnant mothers died from complications associated with the syndrome. [8]

Diagnosis

Two specific types of blood tests are used to aid in the diagnosis of Asherson's syndrome. A coagulation blood test is used to measure and determine the blood's ability to clot and how fast it takes to clot, indicating the presence of lupus anticoagulant in the blood. An enzyme-linked immunosorbent assay (ELISA) test is done to detect anticardiolipin antibodies' presence in the blood. [9] Individuals with CAPS often exhibit a positive test to antilipid antibodies, typically IgG. Patients with high aPL (positive antiphospholipid antibodies) must have microthrombosis in multiple organs to definitively be diagnosed with CAPS—a high antilipid antibody count is not sufficient for diagnosis. [10] To be diagnosed with CAPS, a patient must have three or more new organ thromboses developing within less than a week, and a biopsy must be later performed testing for microthrombosis in order to accurately diagnose the patient with 'definite CAPS'. If the patient has two or less new organ thromboses within a week but a biopsy still indicates the presence of microthrombosis, the patient is not considered to have CAPS. [11] Positive test are often repeated due to the fact that antilipid antibodies can be present in the body for short stints due to infection or drug use. Along with that, individuals may or may not have a history of lupus or another connective tissue disease. Association with another disease such as lupus is called a secondary APS unless it includes the defining criteria for CAPS.

Treatment

Treatments may involve the following steps:

Related Research Articles

<span class="mw-page-title-main">Venous thrombosis</span> Blood clot (thrombus) that forms within a vein

Venous thrombosis is the blockage of a vein caused by a thrombus. A common form of venous thrombosis is deep vein thrombosis (DVT), when a blood clot forms in the deep veins. If a thrombus breaks off (embolizes) and flows to the lungs to lodge there, it becomes a pulmonary embolism (PE), a blood clot in the lungs. The conditions of DVT only, DVT with PE, and PE only, are all captured by the term venous thromboembolism (VTE).

<span class="mw-page-title-main">Antiphospholipid syndrome</span> Medical condition

Antiphospholipid syndrome, or antiphospholipid antibody syndrome, is an autoimmune, hypercoagulable state caused by antiphospholipid antibodies. APS can lead to blood clots (thrombosis) in both arteries and veins, pregnancy-related complications, and other symptoms like low platelets, kidney disease, heart disease, and rash. Although the exact etiology of APS is still not clear, genetics is believed to play a key role in the development of the disease. Diagnosis is made based on symptoms and testing, but sometimes research criteria are used to aid in diagnosis. The research criteria for definite APS requires one clinical event and two positive blood test results spaced at least three months apart that detect lupus anticoagulant, anti-apolipoprotein antibodies, and/or anti-cardiolipin antibodies.

<span class="mw-page-title-main">Thromboembolism</span> Obstruction of a blood vessel by a clot

Thromboembolism is a condition in which a blood clot (thrombus) breaks off from its original site and travels through the bloodstream to obstruct a blood vessel, causing tissue ischemia and organ damage. Thromboembolism can affect both the venous and arterial systems, with different clinical manifestations and management strategies.

<span class="mw-page-title-main">Bleeding diathesis</span> Medical condition

In medicine (hematology), bleeding diathesis is an unusual susceptibility to bleed (hemorrhage) mostly due to hypocoagulability, in turn caused by a coagulopathy. Therefore, this may result in the reduction of platelets being produced and leads to excessive bleeding. Several types of coagulopathy are distinguished, ranging from mild to lethal. Coagulopathy can be caused by thinning of the skin, such that the skin is weakened and is bruised easily and frequently without any trauma or injury to the body. Also, coagulopathy can be contributed by impaired wound healing or impaired clot formation.

<span class="mw-page-title-main">Heparin-induced thrombocytopenia</span> Low platelet count due to heparin, associated with a risk of thrombosis

Heparin-induced thrombocytopenia (HIT) is the development of thrombocytopenia, due to the administration of various forms of heparin, an anticoagulant. HIT predisposes to thrombosis. When thrombosis is identified the condition is called heparin-induced thrombocytopenia and thrombosis (HITT). HIT is caused by the formation of abnormal antibodies that activate platelets, which release microparticles that activate thrombin, leading to thrombosis. If someone receiving heparin develops new or worsening thrombosis, or if the platelet count falls, HIT can be confirmed with specific blood tests.

Lupus anticoagulant is an immunoglobulin that binds to phospholipids and proteins associated with the cell membrane. Its name is a partial misnomer, as it is actually a prothrombotic antibody in vivo. The name derives from their properties in vitro, as these antibodies increase coagulation times in laboratory tests such as the activated partial thromboplastin time (aPTT). Investigators speculate that the antibodies interfere with phospholipids used to induce in vitro coagulation. In vivo, the antibodies are thought to interact with platelet membrane phospholipids, increasing adhesion and aggregation of platelets, which accounts for the in vivo prothrombotic characteristics.

<span class="mw-page-title-main">Thrombophilia</span> Abnormality of blood coagulation

Thrombophilia is an abnormality of blood coagulation that increases the risk of thrombosis. Such abnormalities can be identified in 50% of people who have an episode of thrombosis that was not provoked by other causes. A significant proportion of the population has a detectable thrombophilic abnormality, but most of these develop thrombosis only in the presence of an additional risk factor.

<span class="mw-page-title-main">Dilute Russell's viper venom time</span>

Dilute Russell's viper venom time (dRVVT) is a laboratory test often used for detection of lupus anticoagulant (LA). It is an assessment of the time for blood to clot in the presence of a diluted amount of venom from Russell's viper, a highly venomous snake native to the Indian subcontinent and named after the herpetologist Patrick Russell.

<span class="mw-page-title-main">Portal vein thrombosis</span> Disease of the liver

Portal vein thrombosis (PVT) is a vascular disease of the liver that occurs when a blood clot occurs in the hepatic portal vein, which can lead to increased pressure in the portal vein system and reduced blood supply to the liver. The mortality rate is approximately 1 in 10.

Steven Krilis is Professor of Immunology Allergies and Infectious diseases at the University of New South Wales and St George Hospital in Sydney, Australia. He is a Fellow of the Royal Australasian College of Physicians.

<span class="mw-page-title-main">Thrombotic microangiopathy</span> Medical condition

Thrombotic microangiopathy (TMA) is a pathology that results in thrombosis in capillaries and arterioles, due to an endothelial injury. It may be seen in association with thrombocytopenia, anemia, purpura and kidney failure.

<span class="mw-page-title-main">Post-thrombotic syndrome</span> Medical condition

Post-thrombotic syndrome (PTS), also called postphlebitic syndrome and venous stress disorder is a medical condition that may occur as a long-term complication of deep vein thrombosis (DVT).

<span class="mw-page-title-main">Apolipoprotein H</span> Protein-coding gene in humans

β2-glycoprotein 1, also known as beta-2 glycoprotein 1 and Apolipoprotein H (Apo-H), is a 38 kDa multifunctional plasma protein that in humans is encoded by the APOH gene. One of its functions is to bind cardiolipin. When bound, the structure of cardiolipin and β2-GP1 both undergo large changes in structure. Within the structure of Apo-H is a stretch of positively charged amino acids, Lys-Asn-Lys-Glu-Lys-Lys, are involved in phospholipid binding.

<span class="mw-page-title-main">Cerebral venous sinus thrombosis</span> Presence of a blood clot in the dural venous sinuses or cerebral veins

Cerebral venous sinus thrombosis (CVST), cerebral venous and sinus thrombosis or cerebral venous thrombosis (CVT), is the presence of a blood clot in the dural venous sinuses, the cerebral veins, or both. Symptoms may include severe headache, visual symptoms, any of the symptoms of stroke such as weakness of the face and limbs on one side of the body, and seizures, which occur in around 40% of patients.

<span class="mw-page-title-main">Lupus</span> Human autoimmune disease

Lupus, technically known as systemic lupus erythematosus (SLE), is an autoimmune disease in which the body's immune system mistakenly attacks healthy tissue in many parts of the body. Symptoms vary among people and may be mild to severe. Common symptoms include painful and swollen joints, fever, chest pain, hair loss, mouth ulcers, swollen lymph nodes, feeling tired, and a red rash which is most commonly on the face. Often there are periods of illness, called flares, and periods of remission during which there are few symptoms.

<span class="mw-page-title-main">Livedoid vasculopathy</span> Medical condition

Livedoid vasculopathy(LV) is an uncommon thrombotic dermal vasculopathy that is characterized by excruciating, recurrent ulcers on the lower limbs. Livedo racemosa, a painful ulceration in the distal regions of the lower extremities, is the characteristic clinical appearance. It heals to form porcelain-white, atrophic scars, also known as Atrophie blanche.

Blood clots are a relatively common occurrence in the general population and are seen in approximately 1-2% of the population by age 60. Typically, blood clots develop in the deep veins of the lower extremities, deep vein thrombosis (DVT) or as a blood clot in the lung, pulmonary embolism. A very small number of people who develop blood clots have a more serious and often life-threatening condition, known as thrombotic storm (TS). TS is characterized by the development of more than one blood clot in a short period of time. These clots often occur in multiple and sometimes unusual locations in the body and are often difficult to treat. TS may be associated with an existing condition or situation that predisposes a person to blood clots, such as injury, infection, or pregnancy. In many cases, a risk assessment will identify interventions that will prevent the formation of blood clots.

<span class="mw-page-title-main">Superficial vein thrombosis</span> Medical condition

Superficial vein thrombosis (SVT) is a blood clot formed in a superficial vein, a vein near the surface of the body. Usually there is thrombophlebitis, which is an inflammatory reaction around a thrombosed vein, presenting as a painful induration with redness. SVT itself has limited significance when compared to a deep vein thrombosis (DVT), which occurs deeper in the body at the deep venous system level. However, SVT can lead to serious complications, and is therefore no longer regarded as a benign condition. If the blood clot is too near the saphenofemoral junction there is a higher risk of pulmonary embolism, a potentially life-threatening complication.

Atypical hemolytic uremic syndrome (aHUS), also known as complement-mediated hemolytic uremic syndrome, not to be confused with Hemolytic–uremic syndrome is an extremely rare, life-threatening, progressive disease that frequently has a genetic component. In most cases it can be effectively controlled by interruption of the complement cascade. Particular monoclonal antibodies, discussed later in the article, have proven efficacy in many cases.

<span class="mw-page-title-main">Upshaw–Schulman syndrome</span> Medical condition

Upshaw–Schulman syndrome (USS) is the recessively inherited form of thrombotic thrombocytopenic purpura (TTP), a rare and complex blood coagulation disease. USS is caused by the absence of the ADAMTS13 protease resulting in the persistence of ultra large von Willebrand factor multimers (ULVWF), causing episodes of acute thrombotic microangiopathy with disseminated multiple small vessel obstructions. These obstructions deprive downstream tissues from blood and oxygen, which can result in tissue damage and death. The presentation of an acute USS episode is variable but usually associated with thrombocytopenia, microangiopathic hemolytic anemia (MAHA) with schistocytes on the peripheral blood smear, fever and signs of ischemic organ damage in the brain, kidney and heart.

References

  1. 1 2 3 Nayer, Ali; Ortega, Luis M. (2014). "Catastrophic antiphospholipid syndrome: a clinical review". Journal of Nephropathology. 3 (1): 9–17. doi:10.12860/jnp.2014.03. PMC   3956908 . PMID   24644537.
  2. Asherson, Ronald A. (December 2006). "The catastrophic antiphospholipid (Asherson's) syndrome". Autoimmunity Reviews. 6 (2): 64–67. doi:10.1016/j.autrev.2006.06.005. PMID   17138244.
  3. Garcia-Carrasco, M.; Mendoza-Pinto, C.; Macias-Diaz, S.; Vazquez de Lara, F.; Etchegaray-Morales, I.; Galvez-Romero, J.L.; Mendez-Martinez, S.; Cervera, R. (2015-07-22). "The role of infectious diseases in the catastrophic antiphospholipid syndrome". Autoimmunity Reviews. 14 (11): 1066–1071. doi:10.1016/j.autrev.2015.07.009. PMID   26209907 . Retrieved 2022-11-13.
  4. Rodríguez-Pintó, Ignasi; Espinosa, Gerard; Cervera, Ricard (2014-11-07). "The Catastrophic Antiphospholipid Syndrome". Antiphospholipid Antibody Syndrome. Rare Diseases of the Immune System: 249–262. doi:10.1007/978-3-319-11044-8_20. ISBN   978-3-319-11043-1. PMC   7153043 .
  5. Ortel, Thomas L.; Kitchens, Craig S.; Erkan, Doruk; Brandão, Leonardo R.; Hahn, Susan; James, Andra H.; Kulkarni, Roshni; Manco-Johnson, Marilyn J.; Pericak-Vance, Margaret; Vance, Jeffery (1 December 2012). "Clinical causes and treatment of the thrombotic storm". Expert Review of Hematology. 5 (6): 653–659. doi:10.1586/ehm.12.56. PMID   23216595. S2CID   207211666.
  6. "Asherson's Syndrome". NORD (National Organization for Rare Disorders). Retrieved 2020-12-04.
  7. Gracia-Tello, Borja; Isenberg, David (2017-07-01). "Kidney disease in primary anti-phospholipid antibody syndrome". Rheumatology. 56 (7): 1069–1080. doi: 10.1093/rheumatology/kew307 . ISSN   1462-0324. PMID   27550302.
  8. Gómez‐Puerta, José A; Cervera, Ricard; Espinosa, Gerard; Asherson, Ronald A; García‐Carrasco, Mario; da Costa, Izaias P; Andrade, Danieli C O; Borba, Eduardo F; Makatsaria, Alexander; Bucciarelli, Silvia; Ramos‐Casals, Manuel (June 2007). "Catastrophic antiphospholipid syndrome during pregnancy and puerperium: maternal and fetal characteristics of 15 cases". Annals of the Rheumatic Diseases. 66 (6): 740–746. doi:10.1136/ard.2006.061671. ISSN   0003-4967. PMC   1954660 . PMID   17223653.
  9. NORD. "Asherson's Syndrome". National Organization of Rare Disorders. NORD. Retrieved 29 November 2020.
  10. Aguiar, Cassyanne L.; Erkan, Doruk (December 2013). "Catastrophic antiphospholipid syndrome: how to diagnose a rare but highly fatal disease". Therapeutic Advances in Musculoskeletal Disease. 5 (6): 305–314. doi:10.1177/1759720X13502919. PMC   3836378 . PMID   24294304.
  11. Erkan, Doruk; Espinosa, Gerard; Cervera, Ricard (December 2010). "Catastrophic antiphospholipid syndrome: Updated diagnostic algorithms". Autoimmunity Reviews. 10 (2): 74–79. doi:10.1016/j.autrev.2010.08.005. PMID   20696282.
  12. MD Consult Retrieved on 2009-06-02
  13. Rodríguez-Pintó, I.; Espinosa, G.; Cervera, R. (2014). "The Catastrophic Antiphospholipid Syndrome". Antiphospholipid Antibody Syndrome. Rare Diseases of the Immune System: 249–262. doi:10.1007/978-3-319-11044-8_20. ISBN   978-3-319-11043-1. PMC   7153043 .
  14. Kazzaz, Nayef M.; McCune, W. Joseph; Knight, Jason S. (May 2016). "Treatment of catastrophic antiphospholipid syndrome". Current Opinion in Rheumatology. 28 (3): 218–227. doi:10.1097/BOR.0000000000000269. ISSN   1040-8711. PMC   4958413 . PMID   26927441.