Catastrophic optical damage

Last updated

Catastrophic optical damage (COD), or catastrophic optical mirror damage (COMD), is a failure mode of high-power semiconductor lasers. It occurs when the semiconductor junction is overloaded by exceeding its power density and absorbs too much of the produced light energy, leading to melting and recrystallization of the semiconductor material at the facets of the laser. This is often colloquially referred to as "blowing the diode." The affected area contains a large number of lattice defects, negatively affecting its performance. If the affected area is sufficiently large, it can be observable under optical microscope as darkening of the laser facet, and/or as presence of cracks and grooves. The damage can occur within a single laser pulse, in less than a millisecond. The time to COD is inversely proportional to the power density.

Contents

Catastrophic optical damage is one of the limiting factors in increasing performance of semiconductor lasers. It is the primary failure mode for AlGaInP/AlGaAs red lasers. [1]

Short-wavelength lasers are more susceptible to COD than long-wavelength ones.

The typical values for COD in industrial products range between 12 and 20 MW/cm2.

Causes and mechanisms

At the edge of a diode laser, where light is emitted, a mirror is traditionally formed by cleaving the semiconductor wafer to form a specularly reflecting plane. This approach is facilitated by the weakness of the [ 110 ] crystallographic plane in III-V semiconductor crystals (such as GaAs, InP, GaSb, etc.) compared to other planes. A scratch made at the edge of the wafer and a slight bending force causes a nearly atomically perfect mirror-like cleavage plane to form and propagate in a straight line across the wafer.

But it so happens that the atomic states at the cleavage plane are altered (compared to their bulk properties within the crystal) by the termination of the perfectly periodic lattice at that plane. Surface states at the cleaved plane have energy levels within the (otherwise forbidden) band gap of the semiconductor.

The absorbed light causes generation of electron-hole pairs. These can lead to breaking of chemical bonds on the crystal surface followed by oxidation, or to release of heat by nonradiative recombination. The oxidized surface then shows increased absorption of the laser light, which further accelerates its degradation. The oxidation is especially problematic for semiconductor layers containing aluminium. [2]

Essentially, as a result when light propagates through the cleavage plane and transits to free space from within the semiconductor crystal, a fraction of the light energy is absorbed by the surface states where it is converted to heat by phonon-electron interactions. This heats the cleaved mirror. In addition the mirror may heat simply because the edge of the diode laser—which is electrically pumped—is in less-than-perfect contact with the mount that provides a path for heat removal. The heating of the mirror causes the band gap of the semiconductor to shrink in the warmer areas. The band gap shrinkage brings more electronic band-to-band transitions into alignment with the photon energy causing yet more absorption. This is thermal runaway, a form of positive feedback, and the result can be melting of the facet, known as catastrophic optical damage, or COD.

Deterioration of the laser facets with aging and effects of the environment (erosion by water, oxygen, etc.) increases light absorption by the surface, and decreases the COD threshold. A sudden catastrophic failure of the laser due to COD then can occur after many thousands hours in service. [3]

Improvements

One of the methods of increasing the COD threshold in AlGaInP laser structures is the sulfur treatment, which replaces the oxides at the laser facet with chalcogenide glasses. [4] This decreases the recombination velocity of the surface states. [2]

Reduction of recombination velocity of surface states can be also achieved by cleaving the crystals in ultrahigh vacuum and immediate deposition of a suitable passivation layer. [2]

A thin layer of aluminium can be deposited over the surface, for gettering the oxygen. [2]

Another approach is doping of the surface, increasing the band gap and decreasing absorption of the lasing wavelength, shifting the absorption maximum several nanometers up. [2]

Current crowding near the mirror area can be avoided by prevention of injecting charge carriers near the mirror region. This is achieved by depositing the electrodes away from the mirror, at least several carrier diffusion distances. [2]

Energy density on the surface can be reduced by employing a waveguide broadening the optical cavity, so the same amount of energy exits through a larger area. Energy density of 15–20 MW/cm2 corresponding to 100 mW per micrometer of stripe width are now achievable. A wider laser stripe can be used for higher output power, for the cost of transverse mode oscillations and therefore worsening of spectral and spatial beam quality. [2]

In the 1970s, this problem, which is particularly nettlesome for GaAs-based lasers emitting between 1 µm and 0.630 µm wavelengths (less so for InP based lasers used for long-haul telecommunications which emit between 1.3 µm and 2 µm), was identified. Michael Ettenberg, a researcher and later Vice President at RCA Laboratories' David Sarnoff Research Center in Princeton, New Jersey, devised a solution. A thin layer of aluminum oxide was deposited on the facet. If the aluminum oxide thickness is chosen correctly, it functions as an anti-reflective coating, reducing reflection at the surface. This alleviated the heating and COD at the facet.

Since then, various other refinements have been employed. One approach is to create a so-called non-absorbing mirror (NAM) such that the final 10 µm or so before the light emits from the cleaved facet are rendered non-absorbing at the wavelength of interest. Such lasers are called window lasers.

In the very early 1990s, SDL, Inc. began supplying high power diode lasers with good reliability characteristics. CEO Donald Scifres and CTO David Welch presented new reliability performance data at, e.g., SPIE Photonics West conferences of the era. The methods used by SDL to defeat COD were considered to be highly proprietary and have still not been disclosed publicly as of June, 2006.

In the mid-1990s IBM Research (Ruschlikon, Switzerland) announced that it had devised its so-called "E2 process" which conferred extraordinary resistance to COD in GaAs-based lasers. This process, too, has never been disclosed as of June, 2006.

Further reading

Graduate thesis about COD in high power diode lasers from 2013

Related Research Articles

<span class="mw-page-title-main">Laser</span> Device which emits light via optical amplification

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation. The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.

<span class="mw-page-title-main">Band gap</span> Energy range in a solid where no electron states exist

In solid-state physics and solid-state chemistry, a band gap, also called a bandgap or energy gap, is an energy range in a solid where no electronic states exist. In graphs of the electronic band structure of solids, the band gap refers to the energy difference between the top of the valence band and the bottom of the conduction band in insulators and semiconductors. It is the energy required to promote an electron from the valence band to the conduction band. The resulting conduction-band electron are free to move within the crystal lattice and serve as charge carriers to conduct electric current. It is closely related to the HOMO/LUMO gap in chemistry. If the valence band is completely full and the conduction band is completely empty, then electrons cannot move within the solid because there are no available states. If the electrons are not free to move within the crystal lattice, then there is no generated current due to no net charge carrier mobility. However, if some electrons transfer from the valence band to the conduction band, then current can flow. Therefore, the band gap is a major factor determining the electrical conductivity of a solid. Substances having large band gaps are generally insulators, those with small band gaps are semiconductor, and conductors either have very small band gaps or none, because the valence and conduction bands overlap to form a continuous band.

<span class="mw-page-title-main">Laser diode</span> Semiconductor laser

A laser diode is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with electrical current can create lasing conditions at the diode's junction.

<span class="mw-page-title-main">Gallium arsenide</span> Chemical compound

Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a zinc blende crystal structure.

<span class="mw-page-title-main">Vertical-cavity surface-emitting laser</span> Type of semiconductor laser diode

The vertical-cavity surface-emitting laser is a type of semiconductor laser diode with laser beam emission perpendicular from the top surface, contrary to conventional edge-emitting semiconductor lasers which emit from surfaces formed by cleaving the individual chip out of a wafer. VCSELs are used in various laser products, including computer mice, fiber optic communications, laser printers, Face ID, and smartglasses.

A diode-pumped solid-state laser (DPSSL) is a solid-state laser made by pumping a solid gain medium, for example, a ruby or a neodymium-doped YAG crystal, with a laser diode.

<span class="mw-page-title-main">Terahertz time-domain spectroscopy</span>

In physics, terahertz time-domain spectroscopy (THz-TDS) is a spectroscopic technique in which the properties of matter are probed with short pulses of terahertz radiation. The generation and detection scheme is sensitive to the sample's effect on both the amplitude and the phase of the terahertz radiation.

<span class="mw-page-title-main">Yttrium aluminium garnet</span> Synthetic crystalline material of the garnet group

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM).

<span class="mw-page-title-main">Zinc selenide</span> Chemical compound

Zinc selenide is the inorganic compound with the formula ZnSe. It is a lemon-yellow solid although most samples have a duller color due to the effects of oxidation. It is an intrinsic semiconductor with a band gap of about 2.70 eV at 25 °C (77 °F). ZnSe occurs as the rare mineral stilleite, named after Hans Stille.

Quantum-cascade lasers (QCLs) are semiconductor lasers that emit in the mid- to far-infrared portion of the electromagnetic spectrum and were first demonstrated by Jérôme Faist, Federico Capasso, Deborah Sivco, Carlo Sirtori, Albert Hutchinson, and Alfred Cho at Bell Laboratories in 1994.

Thermophotovoltaic (TPV) energy conversion is a direct conversion process from heat to electricity via photons. A basic thermophotovoltaic system consists of a hot object emitting thermal radiation and a photovoltaic cell similar to a solar cell but tuned to the spectrum being emitted from the hot object.

Aluminium gallium indium phosphide is a semiconductor material that provides a platform for the development of multi-junction photovoltaics and optoelectronic devices. It spans a direct bandgap ranging from ultraviolet to infrared photon energies.

A distributed-feedback laser (DFB) is a type of laser diode, quantum-cascade laser or optical-fiber laser where the active region of the device contains a periodically structured element or diffraction grating. The structure builds a one-dimensional interference grating, and the grating provides optical feedback for the laser. This longitudinal diffraction grating has periodic changes in refractive index that cause reflection back into the cavity. The periodic change can be either in the real part of the refractive index or in the imaginary part. The strongest grating operates in the first order, where the periodicity is one-half wave, and the light is reflected backwards. DFB lasers tend to be much more stable than Fabry–Perot or DBR lasers and are used frequently when clean single-mode operation is needed, especially in high-speed fiber-optic telecommunications. Semiconductor DFB lasers in the lowest loss window of optical fibers at about 1.55 μm wavelength, amplified by erbium-doped fiber amplifiers (EDFAs), dominate the long-distance communication market, while DFB lasers in the lowest dispersion window at 1.3 μm are used at shorter distances.

A quantum-well laser is a laser diode in which the active region of the device is so narrow that quantum confinement occurs. Laser diodes are formed in compound semiconductor materials that are able to emit light efficiently. The wavelength of the light emitted by a quantum-well laser is determined by the width of the active region rather than just the bandgap of the materials from which it is constructed. This means that much shorter wavelengths can be obtained from quantum-well lasers than from conventional laser diodes using a particular semiconductor material. The efficiency of a quantum-well laser is also greater than a conventional laser diode due to the stepwise form of its density of states function.

<span class="mw-page-title-main">Optical rectenna</span>

An optical rectenna is a rectenna that works with visible or infrared light. A rectenna is a circuit containing an antenna and a diode, which turns electromagnetic waves into direct current electricity. While rectennas have long been used for radio waves or microwaves, an optical rectenna would operate the same way but with infrared or visible light, turning it into electricity.

A superluminescent diode is an edge-emitting semiconductor light source based on superluminescence. It combines the high power and brightness of laser diodes with the low coherence of conventional light-emitting diodes. Its emission optical bandwidth, also described as full-width at half maximum, can range from 5 up to 750 nm.

<span class="mw-page-title-main">Interband cascade laser</span>

Interband cascade lasers (ICLs) are a type of laser diode that can produce coherent radiation over a large part of the mid-infrared region of the electromagnetic spectrum. They are fabricated from epitaxially-grown semiconductor heterostructures composed of layers of indium arsenide (InAs), gallium antimonide (GaSb), aluminum antimonide (AlSb), and related alloys. These lasers are similar to quantum cascade lasers (QCLs) in several ways. Like QCLs, ICLs employ the concept of bandstructure engineering to achieve an optimized laser design and reuse injected electrons to emit multiple photons. However, in ICLs, photons are generated with interband transitions, rather than the intersubband transitions used in QCLs. Consequently, the rate at which the carriers injected into the upper laser subband thermally relax to the lower subband is determined by interband Auger, radiative, and Shockley-Read carrier recombination. These processes typically occur on a much slower time scale than the longitudinal optical phonon interactions that mediates the intersubband relaxation of injected electrons in mid-IR QCLs. The use of interband transitions allows laser action in ICLs to be achieved at lower electrical input powers than is possible with QCLs.

An Edge Emitting LED (ELED) fulfills the requirement of high brightness LED, which provides high-efficiency coupling to optical fibers.

Light-emitting diodes (LEDs) produce light by the recombination of electrons and electron holes in a semiconductor, a process called "electroluminescence". The wavelength of the light produced depends on the energy band gap of the semiconductors used. Since these materials have a high index of refraction, design features of the devices such as special optical coatings and die shape are required to efficiently emit light. A LED is a long-lived light source, but certain mechanisms can cause slow loss of efficiency of the device or sudden failure. The wavelength of the light emitted is a function of the band gap of the semiconductor material used; materials such as gallium arsenide, and others, with various trace doping elements, are used to produce different colors of light. Another type of LED uses a quantum dot which can have its properties and wavelength adjusted by its size. Light-emitting diodes are widely used in indicator and display functions, and white LEDs are displacing other technologies for general illumination purposes.

References

  1. Archived February 13, 2006, at the Wayback Machine
  2. 1 2 3 4 5 6 7 Roland Diehl (2000). High-power diode lasers: fundamentals, technology, applications. Springer. p. 195. ISBN   3-540-66693-1.
  3. Dan Botez, Don R. Scifres (1994). Diode laser arrays. Cambridge University Press. p. 314. ISBN   0-521-41975-1.
  4. Kamiyama, Satoshi; Mori, Yoshihiro; Takahashi, Yasuhito; Ohnaka, Kiyoshi (1991). "Improvement of catastrophic optical damage level of AlGaInP visible laser diodes". Applied Physics Letters. 58 (23): 2595. Bibcode:1991ApPhL..58.2595K. doi:10.1063/1.104833.