Catherine F. Clarke | |
---|---|
Alma mater | University of California, Los Angeles |
Scientific career | |
Institutions | University of California, Los Angeles Princeton University |
Thesis | Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat liver (1985) |
Website | Clarke Lab |
Catherine Clarke is an American biochemist who is a Professor of Chemistry at the University of California, Los Angeles. She was the first woman to serve as Head of the Department of Chemistry and Biochemistry. Her research considers the functional roles of Coenzyme Q.
Clarke was an undergraduate and graduate student at the University of California, Los Angeles. Her doctoral research considered the regulation of cholesterol metabolism. After completing her doctoral research, she joined Princeton University as a post-doctoral fellow. She eventually returned to UCLA, where she studied polyisoprene and non-sterol metabolism. Whilst at UCLA, she started working on the biosynthesis of coenzyme Q using the yeast model. [1]
Clarke joined the chemistry and biochemistry department at University of California, Los Angeles in 1993. [1] She was eventually promoted to Professor. Her research considers how cells synthesize coenzyme Q, a non-protein chemical compound that is also known as ubiquinone. [2] [3] Coenzyme Q is a naturally occurring enzyme cofactor found in the mitochondria of the body cells. [4]
Clarke makes use of the yeast Saccharomyces cerevisiae and nematode Caenorhabditis elegans to understand the fundamental mechanisms that underpin the inter- and intracellular charge transport of Coenzyme Q. Clarke studies a respiratory defective Saccharomyces cerevisiae mutant that is deficient in coenzyme Q. By characterizing the yeast and polypeptide proteins that are required for the synthesis of coenzyme Q, Clarke has shown that it is possible to investigate these defects. She has shown that yeast and other eukaryotes share the same biosynthetic pathway, and that a large multi-subunit complex within the mitochondrial matrix is required for Q biosynthesis. [2]
Clarke is also interested in the ageing process. It has been shown that gene mutations which increase the lifespan of nematodes such as Caenorhabditis elegans have homologs in vertebrates, act through highly conserved mechanisms. Mutations in the CLK1 gene of C. elegans can give rise to longer lifespans and are defective in the biosynthesis of Coenzyme Q. These results indicate that CLK1 is essential for the biosynthesis of Coenzyme Q. Her research involves understanding how diet, environment and genotype impact longevity. [1]
In June 2016, Clarke became the first woman to lead the UCLA Department of Chemistry and Biochemistry. [5] [6] Clarke was appointed Dean of Special Projects in the UCLA Division of Physical Sciences in 2019. [7]
Mitochondrial 5-demethoxyubiquinone hydroxylase, also known as coenzyme Q7, hydroxylase, is an enzyme that in humans is encoded by the COQ7 gene. The clk-1 (clock-1) gene encodes this protein that is necessary for ubiquinone biosynthesis in the worm Caenorhabditis elegans and other eukaryotes. The mouse version of the gene is called mclk-1 and the human, fruit fly and yeast homolog COQ7.
Leonard Pershing Guarente is an American biologist best known for his research on life span extension in the budding yeast Saccharomyces cerevisiae, roundworms, and mice. He is a Novartis Professor of Biology at the Massachusetts Institute of Technology.
Cynthia Jane Kenyon is an American molecular biologist and biogerontologist known for her genetic dissection of aging in a widely used model organism, the roundworm Caenorhabditis elegans. She is the vice president of aging research at Calico Research Labs, and emeritus professor of biochemistry and biophysics at the University of California, San Francisco (UCSF).
Isopentenyl pyrophosphate isomerase, also known as Isopentenyl-diphosphate delta isomerase, is an isomerase that catalyzes the conversion of the relatively un-reactive isopentenyl pyrophosphate (IPP) to the more-reactive electrophile dimethylallyl pyrophosphate (DMAPP). This isomerization is a key step in the biosynthesis of isoprenoids through the mevalonate pathway and the MEP pathway.
Glycerol-3-phosphate dehydrogenase (GPDH) is an enzyme that catalyzes the reversible redox conversion of dihydroxyacetone phosphate to sn-glycerol 3-phosphate.
In enzymology, glucosamine-phosphate N-acetyltransferase (GNA) is an enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to the primary amine in glucosamide-6-phosphate, generating a free CoA and N-acetyl-D-glucosamine-6-phosphate.
Sterol O-acyltransferase is an intracellular protein located in the endoplasmic reticulum that forms cholesteryl esters from cholesterol.
Sirtuin 1, also known as NAD-dependent deacetylase sirtuin-1, is a protein that in humans is encoded by the SIRT1 gene.
MutS protein homolog 4 is a protein that in humans is encoded by the MSH4 gene.
Steven G. Clarke, an American biochemist, is a director of the UCLA Molecular Biology Institute, a professor of chemistry and biochemistry at UCLA biochemistry department. Clarke heads a laboratory at UCLA's department of chemistry and biochemistry. Clarke is famous for his work on molecular damage and discoveries of novel molecular repair mechanisms.
Ubiquinone biosynthesis protein COQ4 homolog, mitochondrial is a protein that in humans is encoded by the COQ4 gene.
The Max Planck Institute (MPI) for Biology of Ageing, founded in 2008, is one of over 80 independent, non-profit-making institutes set up under the umbrella of the Max Planck Society. The overall research aim is to obtain fundamental insights into the aging process and thus to pave the way towards healthier aging in humans. An international research team drawn from almost 40 nations is working to uncover underlying molecular, physiological and evolutionary mechanisms.
The α-aminoadipate pathway is a biochemical pathway for the synthesis of the amino acid L-lysine. In the eukaryotes, this pathway is unique to several species of yeast, higher fungi, and the euglenids. It has also been reported from bacteria of the genus Thermus and also in Pyrococcus horikoshii, potentially suggesting a wider distribution than previously thought. This uniqueness of the pathway makes it a potentially interesting target for antimycotics.
DAF-16 is the sole ortholog of the FOXO family of transcription factors in the nematode Caenorhabditis elegans. It is responsible for activating genes involved in longevity, lipogenesis, heat shock survival and oxidative stress responses. It also protects C.elegans during food deprivation, causing it to transform into a hibernation - like state, known as a Dauer. DAF-16 is notable for being the primary transcription factor required for the profound lifespan extension observed upon mutation of the insulin-like receptor DAF-2. The gene has played a large role in research into longevity and the insulin signalling pathway as it is located in C. elegans, a successful ageing model organism.
Genetics of aging is generally concerned with life extension associated with genetic alterations, rather than with accelerated aging diseases leading to reduction in lifespan.
Fred Sherman was an American scientist who pioneered the use of the budding yeast Saccharomyces cerevisiae as a model for studying the genetics, molecular biology, and biochemistry of eukaryotic cells. His research encompassed broad areas of yeast biology including gene expression, protein synthesis, messenger RNA processing, bioenergetics, and mechanisms of mutagenesis. He also contributed extensively to the genetics of the opportunistic pathogen Candida albicans.
Liang Tong is a Chinese American biochemist, structural biologist, and the current chair of the Biological Sciences Department at Columbia University.
Rozalyn (Roz) Anderson is a professor at the University of Wisconsin School of Medicine and Public Health. She studies aging and caloric restriction in primates.
Ram Rajasekharan is an Indian plant biologist, food technologist and a former director of the Central Food Technological Research Institute (CFTRI), a constituent laboratory of the Council of Scientific and Industrial Research. Known for his studies on plant lipid metabolism, Rajasekharan is a former professor of eminence at the Indian Institute of Science and an elected fellow of all the three major Indian science academies namely Indian Academy of Sciences, National Academy of Sciences, India and Indian National Science Academy as well as the National Academy of Agricultural Sciences. The Department of Biotechnology of the Government of India awarded him the National Bioscience Award for Career Development, one of the highest Indian science awards, for his contributions to biosciences in 2001.
Coenzyme Q5, methyltransferase, more commonly known as COQ5, is an enzyme involved in the electron transport chain. COQ5 is located within the mitochondrial matrix and is a part of the biosynthesis of ubiquinone.