Central differencing scheme

Last updated
Figure 1.Comparison of different schemes Comparison .jpg
Figure 1.Comparison of different schemes

In applied mathematics, the central differencing scheme is a finite difference method that optimizes the approximation for the differential operator in the central node of the considered patch and provides numerical solutions to differential equations. [1] It is one of the schemes used to solve the integrated convection–diffusion equation and to calculate the transported property Φ at the e and w faces, where e and w are short for east and west (compass directions being customarily used to indicate directions on computational grids). The method's advantages are that it is easy to understand and implement, at least for simple material relations; and that its convergence rate is faster than some other finite differencing methods, such as forward and backward differencing. The right side of the convection-diffusion equation, which basically highlights the diffusion terms, can be represented using central difference approximation. To simplify the solution and analysis, linear interpolation can be used logically to compute the cell face values for the left side of this equation, which is nothing but the convective terms. Therefore, cell face values of property for a uniform grid can be written as: [2]

Contents

Steady-state convection diffusion equation

The convection–diffusion equation is a collective representation of diffusion and convection equations, and describes or explains every physical phenomenon involving convection and diffusion in the transference of particles, energy and other physical quantities inside a physical system: [3]

...where Г is diffusion coefficient and Φ is the property.

Formulation of steady-state convection diffusion equation

Formal integration of steady-state convection–diffusion equation over a control volume gives

→ Equation 1.

This equation represents flux balance in a control volume. The left side gives the net convective flux, and the right side contains the net diffusive flux and the generation or destruction of the property within the control volume.

In the absence of source term equation, one becomes

→ Equation 2.

Continuity equation:

→ Equation 3.
Figure 2. Interpolation method Interpolation value.png
Figure 2. Interpolation method

Assuming a control volume and integrating equation 2 over control volume gives:

Integrated convection–diffusion equation

Integration of equation 3 yields:

Integrated continuity equation

It is convenient to define two variables to represent the convective mass flux per unit area and diffusion conductance at cell faces, for example:

Assuming , we can write integrated convection–diffusion equation as:

And integrated continuity equation as:

In a central differencing scheme, we try linear interpolation to compute cell face values for convection terms.

For a uniform grid, we can write cell face values of property Φ as

On substituting this into integrated convection-diffusion equation, we obtain:

And on rearranging:

Different aspects of central differencing scheme

Conservativeness

Conservation is ensured in central differencing scheme since overall flux balance is obtained by summing the net flux through each control volume taking into account the boundary fluxes for the control volumes around nodes 1 and 4.

Figure 3.Typical illustration Typical Illustration.png
Figure 3.Typical illustration

Boundary flux for control volume around node 1 and 4

because

Boundedness

Central differencing scheme satisfies first condition of boundedness.

Since from continuity equation, therefore;

Another essential requirement for boundedness is that all coefficients of the discretised equations should have the same sign (usually all positive). But this is only satisfied when (peclet number) because for a unidirectional flow() is always positive if

Transportiveness

It requires that transportiveness changes according to magnitude of peclet number i.e. when pe is zero is spread in all directions equally and as Pe increases (convection > diffusion) at a point largely depends on upstream value and less on downstream value. But central differencing scheme does not possess transportiveness at higher pe since Φ at a point is average of neighbouring nodes for all Pe.

Accuracy

The Taylor series truncation error of the central differencing scheme is second order. Central differencing scheme will be accurate only if Pe < 2. Owing to this limitation, central differencing is not a suitable discretisation practice for general purpose flow calculations.

Applications of central differencing schemes

Advantages

Disadvantages

See also

Related Research Articles

Ficks laws of diffusion Mathematical descriptions of molecular diffusion

Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are certain partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

Potential flow Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid approximation for several applications. The irrotationality of a potential flow is due to the curl of the gradient of a scalar always being equal to zero.

Euler equations (fluid dynamics) Set of quasilinear hyperbolic equations governing adiabatic and inviscid flow

In fluid dynamics, the Euler equations are a set of quasilinear partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity.

In statistics, econometrics and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it is used to describe certain time-varying processes in nature, economics, etc. The autoregressive model specifies that the output variable depends linearly on its own previous values and on a stochastic term ; thus the model is in the form of a stochastic difference equation. Together with the moving-average (MA) model, it is a special case and key component of the more general autoregressive–moving-average (ARMA) and autoregressive integrated moving average (ARIMA) models of time series, which have a more complicated stochastic structure; it is also a special case of the vector autoregressive model (VAR), which consists of a system of more than one interlocking stochastic difference equation in more than one evolving random variable.

In numerical methods, total variation diminishing (TVD) is a property of certain discretization schemes used to solve hyperbolic partial differential equations. The most notable application of this method is in computational fluid dynamics. The concept of TVD was introduced by Ami Harten.

In the study of partial differential equations, the MUSCL scheme is a finite volume method that can provide highly accurate numerical solutions for a given system, even in cases where the solutions exhibit shocks, discontinuities, or large gradients. MUSCL stands for Monotonic Upstream-centered Scheme for Conservation Laws, and the term was introduced in a seminal paper by Bram van Leer. In this paper he constructed the first high-order, total variation diminishing (TVD) scheme where he obtained second order spatial accuracy.

Mathematical descriptions of the electromagnetic field Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In applied mathematics, discontinuous Galerkin methods form a class of numerical methods for solving differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic, parabolic and mixed form problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics.

Diffusion Movement from high to low concentration

Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, like in spinodal decomposition.

The power law scheme was first used by Suhas Patankar (1980). It helps in achieving approximate solutions in computational fluid dynamics (CFD) and it is used for giving a more accurate approximation to the one-dimensional exact solution when compared to other schemes in computational fluid dynamics (CFD). This scheme is based on the analytical solution of the convection diffusion equation. This scheme is also very effective in removing False diffusion error.

In computational fluid dynamics QUICK, which stands for Quadratic Upstream Interpolation for Convective Kinematics, is a higher-order differencing scheme that considers a three-point upstream weighted quadratic interpolation for the cell face values. In computational fluid dynamics there are many solution methods for solving the steady convection–diffusion equation. Some of the used methods are the central differencing scheme, upwind scheme, hybrid scheme, power law scheme and QUICK scheme.

The hybrid difference scheme is a method used in the numerical solution for convection–diffusion problems. It was first introduced by Spalding (1970). It is a combination of central difference scheme and upwind difference scheme as it exploits the favorable properties of both of these schemes.

False diffusion is a type of error observed when the upwind scheme is used to approximate the convection term in convection–diffusion equations. The more accurate central difference scheme can be used for the convection term, but for grids with cell Peclet number more than 2, the central difference scheme is unstable and the simpler upwind scheme is often used. The resulting error from the upwind differencing scheme has a diffusion-like appearance in two- or three-dimensional co-ordinate systems and is referred as "false diffusion". False-diffusion errors in numerical solutions of convection-diffusion problems, in two- and three-dimensions, arise from the numerical approximations of the convection term in the conservation equations. Over the past 20 years many numerical techniques have been developed to solve convection-diffusion equations and none are problem-free, but false diffusion is one of the most serious problems and a major topic of controversy and confusion among numerical analysts.

Finite volume method for one-dimensional steady state diffusion

The Finite volume method in computational fluid dynamics is a discretization technique for partial differential equations that arise from physical conservation laws. These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can be easily be derived from the general transport equation for property Φ by deleting transient and convective terms.

Unsteady flows are characterized as flows in which the properties of the fluid are time dependent. It gets reflected in the governing equations as the time derivative of the properties are absent. For Studying Finite-volume method for unsteady flow there is some governing equations >

The upwind differencing scheme is a method used in numerical methods in computational fluid dynamics for convection–diffusion problems. This scheme is specific for Peclet number greater than 2 or less than −2

The convection–diffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convection–diffusion equation. This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation.

Finite volume method (FVM) is a numerical method. FVM in computational fluid dynamics is used to solve the partial differential equation which arises from the physical conservation law by using discretisation. Convection is always followed by diffusion and hence where convection is considered we have to consider combine effect of convection and diffusion. But in places where fluid flow plays a non-considerable role we can neglect the convective effect of the flow. In this case we have to consider more simplistic case of only diffusion. The general equation for steady convection-diffusion can be easily derived from the general transport equation for property by deleting transient.

Finite volume method for two dimensional diffusion problem

The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms

References

  1. Computational fluid dynamics –T CHUNG, ISBN   0-521-59416-2
  2. An introduction to computational fluid dynamics by HK VERSTEEG and W.MALALASEKERA, ISBN   0-582-21884-5
  3. An introduction to computational fluid dynamics by HK VERSTEEG and W.MALALASEKERA, ISBN   0-582-21884-5
  4. Liu, Xu-Dong; Tadmor, Eitan (1998). "Third order nonoscillatory central scheme for hyperbolic conservation laws". Numerische Mathematik. 79 (3): 397–425. CiteSeerX   10.1.1.26.4631 . doi:10.1007/s002110050345. S2CID   16702600.
  5. Liu, Xu-Dong; Tadmor, Eitan (1998). "Third order nonoscillatory central scheme for hyperbolic conservation laws". Numerische Mathematik. 79 (3): 397–425. CiteSeerX   10.1.1.26.4631 . doi:10.1007/s002110050345. S2CID   16702600.
  6. http://www.bakker.org/dartmouth06/engs150/05-solv.ppt

Further reading